Probabilistic inflow forecasting with the Raven modelling platform

Georg Jost, BC Hydro

Scott Weston, BC Hydro

James Craig, Univ. of Waterloo

Alan Barton, NRC Canada
Outline

BC Hydro FEWS implementation (2014-2016).

- The Raven modelling platform
- Raven and FEWS
- Short Range probabilistic Forecasting
- Points for discussion
BC Hydro - Quick Facts

- Provincial crown corporation
- Serves 95% of BC (1.8 million customers)
- 11,300 MW capacity (3rd largest in Canada)
- 99% hydroelectric and 1% thermal
- 85% of generation from Peace and Columbia
BC Hydro System - watersheds

21 watersheds over a range of hydroclimates

- Short range deterministic forecasts
- Short range probabilistic forecasts
- Long range ensemble forecasts
- Forecasts during construction work
- Climate change projections
Raven – a modular hydrologic modelling framework
The RAVEN Development Team

- **Primary Author**
 James Craig, Ph.D., jrcraig@uwaterloo.ca (its his baby….)

- **Contributing Authors**
 Andrew P. Snowdon (Many process routines; iterative global algorithms)
 Martin Serrer (Linux port; code optimization; I/O management)

- **Other Development Team Members:**
 Ayman Kheydr (Custom Output; Pedotransfer functions)
 Susan Huang (Routing Benchmarking, Input QA routines)
 Wayne Jenkinson (Development Planning & Coordination)
 Georg Jost (Planning)
 Graham Stonebridge (Evapotranspiration Benchmarking)
 Sylvie Spraakman (Technical Documentation)
 Bryan A. Tolson (Ideas and Recommendations)
 Stuart Pearson (Time Series Utilities)
 Cloud Zhang (GIS Utilities)
 Nicholas Zorn (Code Documentation; Doxygen port)
Raven Framework

- More than just another hydrological model
- Modelling platform
 - extensive library of process algorithms
 - Flexible spatial discretization
 - parameter autogeneration
 - powerful & intuitive I/O
 - robust error-checking, etc., etc.
- Build different models on the fly
- Build your own model by choosing from library of process algorithms
- Build your own model by adding your own equations to library of process algorithms
What makes Raven different?

- By choosing a particular model, we already let someone else make most of our decisions!
 - These aren’t necessarily the right decisions.
- Flexibility encourages hypothesis testing about system behaviour
- Flexibility supports stepwise modelling where complexity is added *when justified by data*
Raven: Flexible discretization

From lumped to fully distributed and anything in-between

(a) Catchment Discretization

(b) Grid Cell / LSM Discretization
Raven: Flexible discretization
Raven: Process description

Select from a library of built-in process representations or add your own

<table>
<thead>
<tr>
<th>Precipitation</th>
<th>Snow Processes</th>
<th>Evapotranspiration Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Algorithm</td>
<td>Process</td>
</tr>
<tr>
<td>Precipitation</td>
<td>PRECIP_RAVEN</td>
<td>SNOWMELT</td>
</tr>
<tr>
<td>Snow Processes</td>
<td>SNOW_REFUSE</td>
<td>SNOWMELT</td>
</tr>
<tr>
<td>Evapotranspiration Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANOPY_RAIN</td>
<td>SNOWMELT</td>
<td></td>
</tr>
<tr>
<td>SCS</td>
<td>SNOWMELT</td>
<td></td>
</tr>
<tr>
<td>DRAIN</td>
<td>SNOWMELT</td>
<td></td>
</tr>
<tr>
<td>DEP</td>
<td>SNOWMELT</td>
<td></td>
</tr>
<tr>
<td>GROUND_WAT</td>
<td>SNOWMELT</td>
<td></td>
</tr>
<tr>
<td>LAKE</td>
<td>SNOWMELT</td>
<td></td>
</tr>
<tr>
<td>OPEN_WAT</td>
<td>SNOWMELT</td>
<td></td>
</tr>
</tbody>
</table>

Soil Processes

- INF_NATURAL
- INF_SCS
- INF_ALL_INFLATES
- INF_GREEN_LANDPT
- INF_GA_SIMPLE
- INF_UPGRADED_GREEN_LANDPT
- INF_HYD
- INF_URC
- INF_VIC
- INF_VIC_TYPE
- INF_FRI

Glacier Processes

- GLOVE_MELT
- GLOVE_LUV
- GLOVE_SACRAMENTO
- GLOVE_CONSTANT

Other Processes

- FONDER_RAVEN
- FLOOD
- FLOOD_POT
- FLOOD_LUV

Atmospheric Variables

- WIND_SPEED
- WIND_DIRECTION
- DEWPOINT
- HUMIDITY
- PRESSURE

Evaporation

- EVAP_ADMIN
- EVAP_LANDPT
- EVAP_SACRAMENTO

Interception

- INTERCEPTION
- INTERCEPTION_TO_HYDRO
- INTERCEPTION_TO_LANDPT
Build a model at runtime

Choose an existing model, modify and existing model or build your own.

Forcing functions

- RunName: Ash_ws # NRC adapter updated this value
- StartDate: 2016-02-21 00:00:00
- Duration: 20 # NRC adapter updated this value
- TimeStep: 24:00:00
- Method: ORDERED_SERIES
- Interpolation: FROM_FILE Ash_ws_GaugeWeights.txt

- Routing: ROUTE_NONE
- CatchmentRoute: ROUTE_DUMP
- Evaporation: PET_MONTHLY_FACTOR
- GW_Evaporation: PET_MONTHLY_FACTOR
- SW_RadiationMethod: SW_RAD_UBCWM
- SW_CanopyCorrect: SW_CANOPY_CORR_UBCWM
- SW_CloudCorrect: SW_CLOUD_CORR_UBCWM
- LW_RadiationMethod: LW_RAD_UBCWM
- WindSpeedMethod: WINDVEL_UBCWM
- RainSnowFraction: RAINSNOW_UBCWM
- PotentialMeltMethod: POTMELT_UBCWM
- OroTempCorrect: OROCORR_UBCWM
- OroPrecipCorrect: OROCORR_UBCWM2
- CloudCoverMethod: CLOUDCOV_UBCWM

Hydrologic process order for UBCWM Emulation

- HydrologicProcesses
 - SnowAlbedoEvolve SNOALB_UBCWM
 - SnowBalance SNOBAL_UBCWM MULTIPLE MULTIPLE
 - Flush RAVEN_DEFAULT PONDED_WATER INT_SOIL2 # moves glacier snowmelt to fast runoff
 - Conditional HRU_TYPE IS GLACIER
 - GlacierMelt GMELT_UBC GLACIER_ICE PONDED_WATER
 - Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
 - SoilEvaporation SOILEVAP_UBC MULTIPLE ATMOSPHERE
 - Infiltration INF_UBC PONDED_WATER MULTIPLE
 - Flush RAVEN_DEFAULT SURFACE_WATER INT_SOIL2 # from infiltration
 - GlacierInfiltration GINFIL_UBCWM PONDED_WATER MULTIPLE
 - Percolation PERC_LINEAR_ANALYTIC INT_SOIL INT_SOIL2 # comment out for fast runoff
 - Baseflow BASE_LINEAR_ANALYTIC INT_SOIL3 SURFACE_WATER
 - BASE_LINEAR_ANALYTIC DEEP_GW SURFACE_WATER
 - BASE_LINEAR_ANALYTIC SHALLOW_GW SURFACE_WATER
 - GlacierRelease GRELEASE_LINEAR GLACIER SURFACE_WATER

Process formulation

- EndHydrologicProcesses

BC Hydro
Power smart
GR4J model

Hydrologic process order for GR4J Emulation

:HydrologicProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowTempEvolve SNOTEMP_NEWTONS SNOW_TEMP
:SnowBalance SNOBAL_CEMA_NIEGE SNOW PONDED_WATER
:OpenWaterEvaporation OPEN_WATER_EVAP PONDED_WATER ATMOSPHERE #Pn
:Infiltration INF_GR4J PONDED_WATER MULTIPLE #Ps-
:SoilEvaporation SOILEVAP_GR4J PRODUCT_STORE ATMOSPHERE #Es
:Percolation PERC_GR4J PRODUCT_STORE TEMP_STORE #Perc
:Flush RAVEN_DEFAULT SURFACE_WATER TEMP_STORE #Pn-Ps
:Split RAVEN_DEFAULT TEMP_STORE CONVOLUTION[0] CONVOLUTION[1] 0.9 #Split Pr
:Convolve CONVOL_GR4J_1 CONVOLUTION[0] ROUTING_STORE #Q9
:Convolve CONVOL_GR4J_2 CONVOLUTION[1] TEMP_STORE #Q1
:Percolation PERC_GR4JEXCH ROUTING_STORE GW_STORE #F(x1)
:Percolation PERC_GR4JEXCH2 TEMP_STORE GW_STORE #F(x1)
:Flush RAVEN_DEFAULT TEMP_STORE SURFACE_WATER #Qd
:Baseflow BASE_GR4J ROUTING_STORE SURFACE_WATER #Qr

:EndHydrologicProcesses

Hydrologic process order for GR4J Emulation

:hydrologicprocesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowTempEvolve SNOTEMP_NEWTONS SNOW_TEMP
:SnowBalance SNOBAL_CEMA_NIEGE SNOW PONDED_WATER
:OpenWaterEvaporation OPEN_WATER_EVAP PONDED_WATER ATMOSPHERE #Pn
:Infiltration INF_GR4J PONDED_WATER MULTIPLE #Ps-
:SoilEvaporation SOILEVAP_GR4J PRODUCT_STORE ATMOSPHERE #Es
:Percolation PERC_GR4J PRODUCT_STORE TEMP_STORE #Perc
:Flush RAVEN_DEFAULT SURFACE_WATER TEMP_STORE #Pn-Ps
:Split RAVEN_DEFAULT TEMP_STORE CONVOLUTION[0] CONVOLUTION[1] 0.9 #Split Pr
:Convolve CONVOL_GR4J_1 CONVOLUTION[0] ROUTING_STORE #Q9
:Convolve CONVOL_GR4J_2 CONVOLUTION[1] TEMP_STORE #Q1
:Percolation PERC_GR4JEXCH ROUTING_STORE GW_STORE #F(x1)
:Percolation PERC_GR4JEXCH2 TEMP_STORE GW_STORE #F(x1)
:Flush RAVEN_DEFAULT TEMP_STORE SURFACE_WATER #Qd
:Baseflow BASE_GR4J ROUTING_STORE SURFACE_WATER #Qr

:EndHydrologicProcesses
HBV model

Hydrologic process order for HBV-EC Emulation
#

:HydrologicProcesses

 :SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
 :Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
 :CanopyEvaporation CANEV_ALL CANOPY ATMOSPHERE
 :CanopySnowEvap CANEV_ALL CANOPY_SNOW ATMOSPHERE
 :SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ
 :
 :Overflow RAVEN_DEFAULT SNOW_LIQ PONDED_WATER
 :Flush RAVEN_DEFAULT PONDED_WATER GLACIER
 :
 :GlacierMelt GMELT_HBV GLACIER_ICE GLACIER
 :GlacierRelease GRELEASE_HBV EC GLACIER SURFACE_WATER
 :
 :Infiltration INF_HBV PONDED_WATER MULTIPLE
 :Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR
 :
 :SoilEvaporation SOILEVAP_HBV SOIL[0] ATMOSPHERE
 :CapillaryRise RISE_HBV FAST_RESERVOIR SOIL[0]
 :LakeEvaporation LAKE_EVAP_BASIC SLOW_RESERVOIR ATMOSPHERE
 :
 :Percolation PERC_CONSTANT FAST_RESERVOIR SLOW_RESERVOIR
 :Baseflow BASE_POWER_LAW FAST_RESERVOIR SURFACE_WATER
 :Baseflow BASE_LINEAR SLOW_RESERVOIR SURFACE_WATER

:EndHydrologicProcesses

Additional hydrologic processes

:Snowmelt SNOWMELT SNOWMELT SNOW_00 SNOW_LIQ SNOW
:FixedConcentration FIXED_CONC SNOWMELT SNOW_00 SNOW_LIQ SNOW
:Transport SNOWMELT SNOWMELT SNOW_00 SNOW_LIQ SNOW

Transport calculations for estimation of snowmelt and glacier
contributions to runoff
Raven – Raven and FEWS
Raven - FEWS interface

Model decoupled from forecasting system.

- Relative loose connection between FEWS and Raven
- Easy to plug in another model given no changes to I/O
- A bit more work if model uses different inputs and different discretization
- Plan to move python adapter to C++ (dll)
Raven – FEWS spatial data

High spatial resolution from 1:n relationship between Raven output and HRU shapes
Raven – FEWS spatial data

Spatial visualization of Freezing

- Rain on snow events (overlay with MODIS images)
- Snow melt
Raven – FEWS snow data assimilation

SWE vs Elevation for major land cover types (Forest, Open South, Open North)
Raven – FEWS interface

Raven has a build in transport model

Kootenay Lake Short Range Official Forecast

hydrograph separation into rain, snow and glacier runoff
Long Range ensemble forecast

Revelstoke ESP Run

[Graph showing discharge and temperature over time]
Probabilistic short range forecasting
Why use probabilistic forecasting?

Impossible to give accurate forecasts – we can only try to address and minimize the uncertainty in our forecasts.
Uncertainty in weather forecasts

Raw NAEFS forecast
- North American Ensemble Forecasting System
- Total of 42 members

Preprocessing
- Bias correction
- Dispersion correction

FEWS/Raven
- Scheduled runs

FEWS
- Postprocessing
Direct model output (Raven)

NAEFS ~ 50 k resolution

RDPS ~ 10k resolution but only runs 2 day forecast

Very little skill in forecasts beyond day 8

Probabilistic inflow forecast has highest value between day 3 and day 8
‘Dressed’ NAEFS forecast

Sledge hammer: Center NAEFS spread around official deterministic forecast

The hammer:

$$E_D = FC_{det} \times \frac{E_{NAEFS}}{E_{NAEFS}}$$

NAEFS Uncertainty centered around deterministic forecast
Uncertainty in hydrological model

Generalized Likelihood Uncertainty Estimation (GLUE) Beven and Binley (1992)

- Equifinality
- Monte Carlo simulations
- 20 ‘behavioural’ parameter sets/basin
- Uncertainty depends on:
 - time of the year
 - Rain, snow or rain and snow
 - Initial conditions
Uncertainty in hydrological model

Generalized Likelihood Uncertainty Estimation (GLUE) Beven and Binley (1992)
Points for discussion

- Raven
 - Lots of options that can’t all be tested. How to approach this?
- Raven and FEWS
 - Would be nice if FEWS to work with native model files (not only PI-xml and netcdf)
- Probabilistic short range forecasting
 - How do we deal with coarse resolution NAEFS vs high res regional model?
Whats next?

- Evaluation of short range ensembles
- Hourly forecasting
- Improve model
- Explicit routing
- Multi model prediction
- Gridded forcing (forecast)