

FEWS Configurations in the Toronto Area

March 14, 2019

Presenter: Jongho Keum, Ph.D. McMaster University

Paulin Coulibaly, Ph.D. McMaster University

FloodNet

NSERC Canadian FloodNet McMaster University 1280 Main Street West GSB 206 Hamilton, Ontario L8S 4L8, Canada

905-525-9140 ext 20438

www.nsercfloodnet.ca

@NSERCFloodNet

FloodNet

FloodNet Project

- A multi-disciplinary research network
 - For:
 - Enhanced flood forecasts for all across Canada
 - By:
 - Academic experts
 - Government scientists
 - Operational flood forecasters (endusers)

Examples of FloodNet Research Projects

- Theme 1
 - Flood regimes in Canada: Learning from the past and preparing for the future
- Theme 2
 - Quantifying and reducing the predictive uncertainty of floods
- Theme 3
 - Development of Canadian Adaptive Flood Forecasting and Early Warning System (CAFFEWS)
- Theme 4
 - Risk analysis of physical, socio-economic, and environmental impacts of floods

Examples of FloodNet Research Projects

- Theme 1
 - Flood regimes in Canada: Learning from the past and preparing for the future
- Theme 2
 - Quantifying and reducing the predictive uncertainty of floods
- Theme 3
 - Development of Canadian Adaptive Flood Forecasting and Early Warning System (CAFFEWS) → Use Delft-FEWS platform
- Theme 4
 - Risk analysis of physical, socio-economic, and environmental impacts of floods

FEWS Configurations in Toronto Area

Purpose

- Not for practical operations, but for research purposes
 - Hindcast rather than a real-time forecast
 - Multi-model configuration
 - Capable of integrating external research components from our research group
 - Such as data assimilation and Bayesian forecasting system

Still under development

Forecast Archive

- CaSPAr (http://caspar-data.ca/)
 - Available products: <u>LINK</u>

Watersheds

- Humber River Watershed
 - Semi-urbanized
 - 900 km²

- Don River Watershed
 - Highly urbanized
 - 360 km²
 - 1.4 million residents

Hydrologic Models and Adapters

Raven

- Model developed by U of Waterloo
- Adapter developed by BC Hydro
- Adapter modified by McMaster U
 - NetCDF data transfer with Raven
 - Updated state file (_solution.rvc) fed to Delft-FEWS

CHPS

- NWS CHPS adapter is used
- OHDFewsAdapter
 - SNOW-17
 - SAC-SMA
 - Unit Hydrograph
 - Channel Routing (Lag-K)
 - Etc.

- Topology
 - Import historic data
 - Import archived forecasts
 - Raven model
 - CHPS
 - Update states
 - Run deterministic hindcast
 - RDPS (~72hr)
 - GDPS (~72hr)
 - HRDPS (48hr)

Deterministic Forecasts: Acc. P.

GDPS (0-72hr)

RDPS (0-72hr)

HRDPS (1-48hr)

Deterministic Forecasts: Mean Areal P.

CHPS: Semi-distributed internally

Raven adapter (python):

One adapter does all pre-processing, executing, and post-processing

Raven model: Semi-distributed externally

Raven State Updating: GA runs an external python script

Future Works

Batch Forecast

- Adapt other hydrologic/hydraulic models
- Integrating enhanced forecasting components from our research group
 - Data Assimilation (beyond OpenDA)
 - Bayesian Forecasting System

Thank you

