Operational River Temperature Forecasting Using A Coupled Delft3D Framework T. Matthew Boyington March 2019 ## Thermal Compliance at TVA - The Tennessee Valley Authority (TVA) is a corporate agency of the United States of America (formed in 1933) that manages the Tennessee River and provides electricity to the Tennessee Valley. - At TVA the hydrothermal team is responsible for helping the power plants maintain river temperature environmental compliance - In-house development of computational models (cold state) that simulate river flow (1D hydraulics), power plant functions (condenser, cooling towers), and mixing zone (2D plume) - Issue daily river temperature forecasts (end of mixing zone) - Near real-time forecasts and advisements during critical periods - Provide recommendations for cooling tower operations - Coordinate special river flows (steady flow, flow bumps) - TVA has integrated Delft3D-FLOW into its hydrothermal forecasting system (FEWS-HTMS) for daily, operational forecasts - Delft3D-FLOW models developed (Deltares) for three baseload power plants - Presentation will focus on Browns Ferry on Wheeler Reservoir, Alabama, USA TVA electricity service area in the southeast United States #### **Project Motivation and Goals** - Complex flow patterns occur in the vicinity of the power plants (withdrawal of cooling water, wave reflection off of downstream dams, bathymetry, etc.) - 1D hydraulics in TVA models cannot accurately represent localized 3D flow (recirculation) - To ensure environmental compliance, TVA operates the river and cooling tower equipment conservatively during summer months - Steady flows (reduce reservoir sloshing and reverse flows; forego income from hydro peaking) - Forecast uncertainty can result in extended operation of cooling towers - Business Justification: An improved representation of river processes (decrease forecast uncertainty) will allow for increased hydro peaking (increased revenue), further optimization of cooling equipment (reduced costs), and reduced compliance risk - Goal: generate a 48-hour river temperature forecast in 30-minutes with an accuracy of 1.0°F (0.55°C) on the 24-hr rolling average using a 3D hydrodynamic model Fluent model results on Wheeler Reservoir, Alabama, United States ## Field Campaign - Field campaign conducted in 2016 (May 2–6) - Collect flow, velocity, and water temperature data near Browns Ferry - Assist in the development of a Delft3D-FLOW model for Wheeler Reservoir #### Wheeler Reservoir - 74 miles (119 km) long - Guntersville Dam (upstream) - 55 miles (88 km) from Browns Ferry - Wheeler (downstream) - 19 miles (31 km) from Browns Ferry Guntersville Dam (GUH) #### Field Campaign #### Instrumentation - Hobos (29 stations, 430 sensors) - ADV (9 bottom mounted) - ADCP tracks - Telogs across reservoir (6 WSE) - Drogues (6 units, GPS enabled) - Thermal camera (aerial) - Meteorology station at power plant - Plant permanent temperature stations (6 stations) Tire float Hobo temperature station Location of Hobo stations Location of ADVs # ADCP Locations ADCP Locations **ADCP** transects TVA Sideview # Field Campaign River flows were scheduled to capture steady periods, peaking operations, and reservoir sloshing #### Model Setup Model grid cell resolution ranges from 30–60 feet (9–18 meters) near the diffusers up to 2,000 feet (600 meters) #### Model Setup - Z-layer (30 vertical layers) - 0.65 feet (0.2 meter) at water surface - 48 feet (14 meter) at bed - Roughness - Manning: 0.028 - Turbulence Model - K-Epsilon & Buoyancy Flux (density stratification) Bathymetric cross-section of Wheeler Reservoir and Z-layers Location of local inflows to Wheeler Reservoir - Wind forcing high temporal resolution (10 minute) - Air temperature and solar radiation at hourly interval - Local inflows calculated daily by TVA River Forecast Center (RFC) #### Station 4 - Upstream ambient temperatures - Approximately 4 miles (6.5 km) upstream of plant - Compliance point - Permanent installation # Coupled Modeling Framework - Separate subgrid model needed to simulate the diffuser plume - Iterative nature of the problem requires a coupled model framework to simulate recirculation while meeting run-time constraint - Plant equipment (TVA) - Plume (TVA, updated by Deltares) - Reservoir (Deltares Delft3D-FLOW) - Model interaction coordinated COSUMO - COupled SUbgrid MOdels - Developed by Deltares in MATLAB - Not yet available with Delft3D-FM - COSUMO converts plume geometry to diluted sources and entrainment sinks for Delft3D-FLOW #### **Delft3D-Flow Enhancements** - Simulation did not follow the near-surface (0.5 feet) diurnal heating - Absorption of solar radiation in the nearinfrared 700-2500 nm range in the top layer of Wheeler Reservoir was not well represented - Compliance depth is 3-5-7 foot average - Updated with new "double absorption" functionality - Blend of two Lambert-Beer Law profiles with user-defined ratio (ßsd) of incoming solar radiation associated with Secchi depth and the rest of the radiation absorbed with fraction of the Secchi depth $$I(z)/I_{inc} = \beta_{SD} \exp(-k_{SD}z) + (1 - \beta_{SD}) \exp(-k_{shallow}z)$$ Without "double absorption" With "double absorption" #### **Delft3D-Flow Enhancements** - Wind related - Increased wind drag coefficient (Cd) at low (U10 < 4 m/s) wind speed - Cd = Stanton = Dalton (coef. sensible & latent heat) - Enhancements currently in model branch (not in release version but available) #### Additional Enhancements #### SlotJet (TVA) - Current plume model does not accurately distribute heat from diffusers in the water column - Upgrade using Jirka (2006) - > Add flow drag force components - > Elongates plume path - Target completion is Spring 2019 #### FEWS - "Modifier copy" enhancement in 2018.02 Temperature cross-section at diffusers ^{*}Jirka, G. H., 2006. Integral Model for Turbulent Buoyant Jets in Unbounded Stratified Flows Part 2: Plane Jet Dynamics Resulting from Multiport Diffuser Jets. Environmental Fluid Mechanics (2006) 6: 43-100. #### Hardware - Ability to run 9 river temperature forecasts concurrently - Analyze multiple hydro generation schedules during daily scheduling of river (generated by RiverWare) - Support 3 power plants during critical periods - Able to quickly reconfigure processor allocation - Computing cluster accessible for special studies (outside of FEWS) - Tech specs - 9 FEWS forecasting shells (Virtual machines) - Supermicro Servers (Physical servers, child nodes) - > 54 blades / nodes total - > 6 per model scenario - Intel Xeon Processor E3-1285 v6 @ 4.1 Ghz - > 4 core / partitions - > 216 cores / partitions total - > 18 per model scenario (3 nodes for Delft3D, 1 for OS) - Cisco Nexus 93108TC-EX - > 10 Gigabit (necessary because of MPI) TVA Delft3D-FLOW computing cluster #### Hardware #### **Data Products** FEWS plots Current layer (FEWS) River temperature animation (FEWS) MATLAB images and animations | A | В | E | Đ | E | | |-------------------|-------------------|--|---|---|--| | TW24 | TW24 | TW24 | TW24 | TW24 | Ţ | | . , | . , | . , | . , | . , | 0 | | St 4 or 14, 3-5-7 | S | | BFN-(53) | BFN-(53) | BFN-(53) | BFN-(53) | BFN-(53) | В | | BFN_53_(Delft3D) | BFN_53_(Delft3D) | BFN_53_(Delft3D) | BFN_53_(Delft3D) | BFN_53_(Delft3D) | В | | Delft3D_Wheeler | Delft3D_Wheeler. | Delft3D_Wheeler. | Delft3D_Wheeler | Delft3D_Wheeler. | D | | [1] | [1] | [1] | [1] | [1] | Ī | | 11-08-2018 | 11-08-2018 | 11-08-2018 | 11-08-2018 | 11-08-2018 | ì | | 07:00:00 | 07:00:00 | 07:00:00 | 07:00:00 | 07:00:00 | 0 | | 11-03-2018 | 11-04-2018 | 11-05-2018 | 11-06-2018 | 11-07-2018 | 1 | | Sat | | | | | П | | | | | | 62.7 | 64.3 | | 62.9 | 62.6 | 63.0 | 4 | | | | | | | | | | | | | | 1 | | | | | | | μ. | | | | | | | + | н | | 63.7 | 63.0 | 62.8 | 62.7 | 62.9 | н | | 63.6 | 63.0 | 62.8 | 62.7 | 62.9 | | | 63.5 | 63.0 | 62.8 | 62.7 | 62.8 | | | 63.5 | 63.0 | 62.8 | 62.7 | 62.8 | П | | 63.5 | 63.0 | 62.7 | 62.8 | 62.7 | | | 63.4 | 63.0 | 62.7 | 62.8 | 62.7 | - | | 63.4 | 62.9 | 62.7 | 62.8 | 62.6 | П | | 63.4 | 62.9 | 62.7 | 62.9 | 62.6 | П | | 63.3 | 62.9 | 62.6 | 62.9 | 62.5 | | | 63.3 | 62.9 | 62.6 | 62.9 | 62.4 | | | | TM24 (DEEP) | TV24 (DGEF) (DGE | 1024 1024 1024 1024 1026 | TV24 TV24 TV24 TV24 TV24 TV24 TV26 | Triggraph Trig | Tabular reports (FEWS) # Summary - TVA and Deltares, in partnership, have implemented an operational river temperature forecasting system using a 3D hydrodynamic model (Delft3D-FLOW) for the Tennessee River - Delft3D double absorption, and wind drag functions; and FEWS modifier copy feature available to Deltares community - Production forecasting in summer 2019 - Project benefits: - Increased hydro generation during critical summer months - Further optimization of cooling tower use - Reduced compliance risk and impact Mural of Tennessee Valley Watershed Dam (painted 1956) #### Questions?