

Verification Analytics and Delft3D FEWS Integration

Gabriel Miller and Nathan Barber
11/7/2018

What We Do

Partner with 154 local power companies, to serve 9 million people and 700,000 businesses in parts of seven states.

Directly serve **58** large industries and federal installations.

The TVA Power System

Tennessee Valley Watershed

TVA FEWS System

- Three year project
 - Converted in-house forecast system to standard models and FEWS system
 - Migration from 100+ programs to one unified platform
 - Vastly improved data visualization and reports
- Live on Feb 7th 2017

The Value of Forecasts to TVA

- TVA is a forecast-driven agency due to the expensive and long-term nature of our capital investments
- We forecast
 - Load growth
 - Gas prices
 - Coal prices
 - River flows
 - Budget spends
 - Equipment life....

For TVA, better forecast = lives saved, more \$\$\$, better decisions.

What Next? How bad are my forecasts?

Refresher course for meteorologists...

So, how then should we verify?

- Leveraged FEWS Open Archive and PI Webservice to:
 - Extract data
 - Pair forecasts and observations by parameter and timestep
 - Calculate predefined verification statistics
 - Provide accessible data cubes that can be accessed by Excel, PowerBI, SSRS, Tableau.
- 1,000,000,000 rows of data (and growing).

"If we learn from our mistakes, shouldn't I try to make as many mistakes as possible?"

Software Architecture

Demo

River Temperature Modeling

Hydrothermal Modeling

 The hydrothermal team supports TVA power plants in maintaining environmental compliance (river temperature)

- Assist the power plants in maintaining environmental compliance for river

temperature

 Generate river temperature forecasts

- Coordinate use of cooling towers
- Coordinate river operations and hydroelectric generation

Project Overview

- Complex flow patterns occur in the vicinity of the power plants due to the withdrawal of cooling water
 - 1D hydraulics in TVA models cannot accurately represent localized 3D flow (recirculation)
- To ensure environmental compliance, TVA operates the river and cooling tower equipment conservatively during summer months
 - Steady flows (forego income from hydro peaking)
 - Forecast uncertainty can result in extended operation of cooling towers
- Goal: generate a 48-hour river temperature forecast in 30-minutes with an accuracy of 1°F using a 3D model

Modeling Framework

- Coupled model framework required to simulate plant induced recirculation while meeting project run-time constraint
 - Plant equipment (TVA)
 - Plume (TVA, Deltares)
 - Reservoir (Deltares Delft3D)
- Model interaction coordinated by COSUMO
- Deltares developed Delft3D models in conjunctions with a large field campaign.
- Delft3D changes were required to meet operational constraints

Hardware

- Ability to run 8 river temperature forecasts concurrently
 - Analyze multiple hydro generation schedules during daily scheduling of river
 - Support 3 power plants during critical periods
- Specs
 - 8 FEWS forecasting shells (Virtual machines)
 - Supermicro Servers (Physical servers)
 - > 54 blades / nodes total
 - > 6 per model scenario
 - Intel Xeon Processor E3-1285 v6 @ 4.1 Ghz
 - > 4 core / partitions
 - > 216 cores / partitions total
 - > 18 per model scenario (3 nodes for Delft3D, 1 for OS)
 - Cisco Nexus 93108TC-EX
 - > 2 switches
 - > 10 Gigabit (necessary because of MPI)

Hardware

Server / Node

Delft3D_Wheeler_UpdateStates: [1] Delft3D_Wheeler_UpdateStates 11-05-2018 06:00:00 CST Current Delft3D_Wheeler_Forecast_0: [2] Delft3D_Wheeler_Forecast_0 11-05-2018 07:00:00 CST Current

