Linked rainfall recharge models with groundwater models in NGMS (and looking forward to a future NGMS)

Mark Whiteman¹, Rolf Farrell¹, Harris Tarnanas¹, Marcel Ververs², Alastair Black³

- ¹ Environment Agency of England
- ² Deltares
- ³ Groundwater Science Ltd.

Context

Risk of drought, Spring 2012

Need to undertake scenario runs

Models not ready for it

Hurried updates and over-reliance on rainfall runoff models

Partial NGMS 4R implementation used to emulate manual process undertaken at the time.

Process (following) published in:

Integrated environmental modelling to solve real world problems – Geological Society Special Publication Vol 408; Splicing recharge and groundwater flow models in the Environment Agency National Groundwater Modelling System; Rolf Farrell, Marcel Ververs, Paul Davison, Paul Howlett and Mark Whiteman.

Recharge models and groundwater models

Groundwater model (MODFLOW96-VKD)

Recharge model (4R)

1965 April 2012

Drought scenario

4R Abs

Potential groundwater drought event

Abs

Historic groundwater levels match current event

Historic rainfall matches current scenario event

Historic abstractions closest to predicted current

River flow hydrograph

2017

- Finally fully implement 4R to NGMS
- Needed due to low spring rainfall 2017
- Subsequent rainfall has addressed SW concerns
- Groundwater drought remains a possibility in 2018; recharge this coming winter still a concern

Rainfall scenario set-up

Potential Evapotranspiration scenario set-up

Abstraction scenario set-up

Recharge scenario results – groundwater levels

Recharge scenario results – river flows

Rainfall difference plot – end of drought

Recharge scenario results – groundwater head difference (end of drought)

Future NGMS

Water Co

NGMS

code

Unstructured Quad Tree mesh

Unstructured Complex Voronoi

Vertical Discretisation and discontinuous layers

Run time.....

- What makes models bigger???
 - "Big is best"
 - Consultancy steer
 - Irregular grids
 - Insufficient focus on model efficiency (stability, inactive cells, grid spacing)

More usability =

- Control of physical size of model
- Faster Modflow processes
- Faster Delft FEWS processes
- Better (different) hardware
- Avoid unnecessary processes (inactive layers/cells, running "sub models", shorter scenario periods etc)

Parallel Modflow (PMF) vs "Normal" Modflow

RUNTIME [Hours] on a very fast CPU = 4.4Ghz, 12 core vs GPU = RX480 - 2304 core @
1.2Ghz.

A faster running NEAC model

MODFLOW6 / USG can be notably faster
Parallel MODFLOW further improvement
Model stability is key

NEAC runtime (hours) per scenario

Reducing run time – an unhelpfully large model from Southern England.....

	File size (Gb)	MF runtime (hours)	NGMS Runtime (hours)	Total runtime (hours)
As delivered	630	96	96	192
Parallel Modflow	630	24	96	120
Remove inactive layers, rows and columns	302	19	46	65
Reduce stress periods periods per timestep (reduce output file sizes)	er 75	13	11	25
Single Scenario	18.8	3.4	2.9	6.3

Future NGMS

- New developments in Modflow 6 not compatible with current NGMS
 - Unstructured grids
 - Completely new input file format
 - New module adapter needed
- New system structure
 - Focus on ease of use (actual functionality OK)
 - Focus on system reliability/availability

Questions to the audience

Benefits of moving to cloud?

Dealing with physical servers seems a bit old

fashioned

Handling irregular g mensions)

Faster run times in

Thank you.....

