

FEWS Applications in North America

Ben Balk (Deltares USA)

October 26, 2017

North American FEWS Applications – Deltares USA/NL

Deltares USA

FEWS Implementations Timeline in North America

NWS – Community Hydrologic Prediction Service (CHPS)

NWS river forecasts – http://water.weather.gov/ahps/forecasts.php

NWS - CHPS + National Water Model (NWM)

National Water Model – http://water.noaa.gov/documents/wrn-national-water-model.pdf

- Current (Yellow) CHPS
 - ~4000 forecast points

- Future (Blue) NWM
 - ~2.7 M forecast points

NWS - National Water Model (http://water.noaa.gov/map)

NWS – NWM data in FEWS

BPA – Bonneville Power Administration (Streamflow)

BPA Streamflow (Water Supply Forecasting)

Snowpack-driven water supply forecasting

- Inflow forecasting for 31 reservoirs
- System is storage limited
- ~75-80% of runoff from snowmelt
- Yet seasonal runoff is highly variable
 - El Nino vs La Nina
- PCA snow update analysis
 - Interactive or batch

BPA Streamflow - Verification

Ensemble Verification System (EVS) and Open Archive

- Development started at NWS Office of Hydrologic Development...led by James Brown
 - Now at Hydrologic Solutions, Ltd (UK)...continues to develop EVS
- Open source (https://amazon.nws.noaa.gov/ohd/evs/evs.html)
- EVS is more than just ensembles...can also verify deterministic forecasts
 - Powerful system utilizing most commonly used verification metrics
- EVS accesses the simulated forecasts stored in the Archive via the FEWS Pi-Service

BPA Streamflow – EVS & Archive

BPA – Bonneville Power Administration (Reservoir)

BPA – Role within Columbia River basin

Federal Columbia River Power / Transmission System (FCRPS)

- The US Army Corps of Engineers and the Bureau of Reclamation operate the federal dams for multiple public purposes:
 - Flood Control
 - Navigation
 - Fish protection operations
 - Endangered Species Act, Clean Water Act
 - Irrigation
 - Recreation
 - Power production
- BPA's Role
 - Markets the power produced from the federal dams within the constraints and requirements for other river purposes
 - Primary high-voltage transmission provider in the Columbia River Basin

BPA – Flexibility

- Operational objectives/constraints on the FCRPS significantly reduce flexibility of the hydro system
 - Flood control, fish obligations, outages, etc.
- Flexibility further affected by uncertainties
 - Streamflow, Load, Wind, etc.
- Optimize value of generation within remaining flexibility
 - Need models with various objectives to solve a wide scope of operational problems
 - Models for both "Real Time" and "Short Term" planning horizons

BPA – HERMES design in FEWS

BPA – HERMES FEWS platform

HERMES Design in FEWS

Flexibility for multiple groups, multiple models, and control of data management within one platform

BCHydro – British Columbia (Canada) Hydro

BCHydro – Water Supply Forecasting

Quick Facts

- Serves 95% of BC (1.8 million customers)
- 11,300 MW capacity (3rd largest in Canada)
- 99% hydroelectric and 1% thermal

Modeling

- RAVEN
 - Flexible, modular (UBC Watershed Model)
 - Lumped to semi-distributed
 - http://www.civil.uwaterloo.ca/jrcraig/Raven/Main.html
- Ensembles
 - Multi-parameter (GLUE) 20 parameter sets / basin
 - ESP of ESP
 - Restart and state update at monthly time steps
 - Uncertainty in snow accumulation and ablation

BCHydro – ESP of ESP

New Brunswick (Canada)

- U.S. Canada border
 - St. John's River
- Strong relations with NERFC
- Standalone system
- Models
 - SSARR
 - Raven (UBC Watershed)
 - HEC-RAS

TVA – Tennessee Valley Authority

TVA – Hydrothermal Data Validation and Modeling

- Data validation and archival of water temperatures
 - Previous: 3-5 days of staffing per month (paper reports)
 - Current: ~4 hours per month
- Hydrothermal modeling
 - Assist the power plants in maintaining environmental compliance for thermal river discharges
 - Generate river temperature forecasts
 - Coordinate use of cooling towers
 - Coordinate river operations and hydro production
- Delft3D-FLOW reservoir models
 - Dynamic two-way coupling to near-field TVA slot-jet models
 - COSUMO (Deltares software) handles coupling
 - Intensive field campaigns to collect data under various scenarios (low flows, sloshing)
 - Calibrate model to field campaign data
 - Implement in FEWS

The Water Institute of the Gulf

The Water Institute of the Gulf – CERF

Coastal Ecomorphological Real-Time Forecasting (CERF) System

- Forecast system for coastal Louisiana
 - Water level
 - Salinity
 - Water temperature
 - Sediment
- Support the management of existing Mississippi Delta restoration projects
 - Management of diversions
- Support the design of large scale monitoring programs
- Delft-FEWS platform with Delft3D as primary model

The Water Institute of the Gulf – CERF

- River
 - Hindcast –
 USGS/USACE
 - Forecast NWS
- Temperature
 - USGS with extrapolation

Open Water – Hindcast/Forecast

- Tide
 - ESTOFS
- Salinity
 - HYCOM
- Temperature
 - HYCOM

River Forecast Model

Atmospheric Forecast Model

- Hindcast & Forecast (GFS)
 - Wind
 - P & ET
 - Temperature (heat flux, cloud cover, RH)

The Water Institute of the Gulf – CERF

Idaho Power (IPC) – River, Reservoir, Meteo, Water Quality

Idaho Power (IPC) – River, Reservoir, Meteo, Water Quality

Idaho Power (in progress)

- 3 separate groups eventually merge configuration into one joint system
 - Operational Hydrology (OH), Meteo Analysis, River Engineering (Water Quality)
- OH RFS
 - NWSRFS models for inflow forecasting
 - Switching to RiverWare (CADSWES) for reservoir forecasting
- Meteo
 - Grid analysis
 - Provide OH the meteo forcings
 - Forecast Mixer
- River Engineering
 - HEC-RAS and CE-QUAL-W2 models for river studies
 - Focus on water temperature

IPC Meteo – Forecast Mixer

Québec (Canada)

Québec – Système Prévision Hydrologique

Québec SPH (in progress)

- Provincial Government
 - River and reservoir forecasting
- Models
 - Hydrotel (local university)
 - Reservoir, uncertainty (in-house)
 - Québec coded the adapters
 - Users and programmers
 - quick learners of FEWS
- U.S. and Canadian met models
 - Deterministic and ensembles
- Climate change studies
 - WaSiM

FloodNet (Canada)

FloodNet – NSERC CAFFEWS (in progress)

- Goal: common flood forecasting platform
 - Currently no overarching national program
 - Each province largely independent from neighbors
 - Delft-FEWS is one of several software being considered
- WATFLOOD adapter

