

Verbund

Flood forecasting in an alpine region from perspective of a hydropower trader

Some short insights

Ulrich Haberl (Verbund Trading GmbH), Simone Patzke & Juan Salva (Hydrotec)

Verbund hydropower - alpine catchments

Verbund

Installed hydropower capacity: 8,215 MW

Typical alpine regime at all plants SNOW-MEL SNOW-MELT

River plants

Pumpstorage plants

Alpine Storages

Verbund

▶ Small catchments (~50 km²) rises up to 3800 m

Danube, Drau & Mur catchment

Verbund

Catchment area ~120.000 km²

Characteristics of alpine catchments

Verbund

- Snowhydrology plays an important role
- Very fast and local runoff-generation effects
- Good hydrological information is often rare
 - mountains are shading the radar,
 - measuring point density in high regions is very low because of difficult terrain
- ▶ A lot of micrometeorological effects
- Hydrological effects on different scales

All these points together make the hydrological forecasting challenging!

Trading: daily business & the role of hydrological forecasts

- Databasis for optimization overall production
- Databasis for day-ahead marketing of river powerplant production
- Databasis for managing the storages in extreme situations
- Flood management (24/7):
 - Lowering headwater at Drau river based on forecasts
 - Activate standby-staff in flood situations
 - Support crises committee
- Basis for reservoir purching
- Basis for construction- and service-works

Operational challenges

- Jumping forecasts versus hard limits
 - Forecast-failures helps very efficient, that people do not trust in the forecasts...
- Lowering headwater at Drau river based on forecasts > aquatic habitat versus flood protection
 - That is a problem when a forecasted flood does not occur
 - RTC-Tool to determine the latest time to start lowering with turbines again jumping forecast and hard limits are troublemaker...
- Uncertainty of precipitation analysis result in bad hydrological states and further in wrong forecasts
 - Input-correction via What-If Scenarios is necessary: Number of models versus local uncertainties
- Before the Flood versus after the Flood
 - When the flood is gone, everybody would have done the perfect forecast...
 - A good archive of the forecasts is important to find the perfect forecast or helps to make forecasts better
- And what about Climate Change?

Climate Change effecting the forecasting system?

- Parameters for hydrological Model Cosero can change....
- More local weather effects
- Extreme events are quiet hard to hit
- ▶ More "false warnings" people do not trust the models any more.
- Uncertainty in forecast rise > uncertainty of optimization results (HP schedules) rises.

FEWS @ Verbund = PROVIS

- ▶ For all these challenges we use Delft-FEWS (PROVIS)
 - Client Server Systems (Test and Production)
 - Around 30 users all over Austria
- Hydrotec
 - ▶ FEWS-Configuration
 - Support and Maintenance
- Recent Developments in PROVIS
 - Drawdown-Tool Drau
 - Open Archive

Hydropower plants along the river Drau

▶ Verbund Hydro Power GmbH:

10 hydropower plants along the Drau

hydropeaking operation

Verbund Trading GmbH:

operational forecasting

responsible for informing operator about required drawdown in case of an expected flood event

Drawdown at the right time

Verbund

- As late and smooth as possible to not disturb the aquatic habitat
- Early enough to ensure protection of houses and infrastructure
- Not to increase the predicted flood wave

Decision-making

- Operational Forecasts in PROVIS
- Expert Knowledge

Challenges

- Very fast and local runoffgeneration effects
- Dynamic Predictions
- Hydropeaking Operation

Regulation Rules

- Define trigger of drawdown: threshold Q forecast
- Define drawdown storage level for each reservoir
- Constraint: maximum drawdown rate
- Constraint: maximum discharge at outlet

Drawdown-Tool

Verbund

Drawdown-Tool

- support decision-makers,
- help to understand process of drawdown,
- based on RTC-Tools,
- linked to Delft-FEWS

- ▶ Requirements, the model must meet:
 - define timing and duration of drawdown within limits of regulation rules
 - main criterion:

$$Peak(Q_{Lavamünd} + Q_{Drawdown)}) \le Peak Q_{Edling}$$

- Start as late as possible, but early enough
 - smooth process
 - ▶ end 12 h before Q_{Peak,Edling}

Optimisation problem

- Threshold crossing Q forecast
- Define peak Q forecast
- Set end of drawdown 12 h before peak
- Drawdown as late & smooth as possible
- Main output for decision-maker: time left until start of drawdown

Simulation November 2019

Visualisation in PROVIS

- Time until start of computed drawdown
- Minimum of all values for all reservoirs
- ▼ Timeseries for each forecast (INCA, ALARO, etc...)

Resume and Outlook

- Drawdown-Tool supports monitoring dynamical development of forecasts in an operational system
- ▶ Trends get more visible, which will reassure the decision-maker
- Current version of Drawdown-Tool runs successfully on operational Client Server System
- Next step: Extend tool to also take into account the process of refilling the reservoirs using the flood wave generated by the drawdownprocess

Integration of the Open Archive into PROVIS

- ▶ Implementation of the Roadmaps 2020
- Components of the Open Archive

Elaboration of an Archive Plan

- Objective of the Open Archive
- Type of data to be archived
- Frequency
 - Daily
- Storage period
 - ▶ Long-term storage (20 years)
 - Short-term storage (2 months)
- Clean-up strategy
 - Lifetimes (DataManagementTool)
- Definition of events
 - Historical events

Distribution of datasets to be archived per type

Archiving and importing data (Drawdown tool)

Verbund

Workflows to archive data and to import archived data into Delft-FEWS

OpenArchive_Export_COSERO_Systemzustaende (workflow)

OpenArchive_Export_COSERO_Grids_Historical (workflow)

OpenArchive_Export_COSERO_Grids_Simulated (workflow)

OpenArchive_Export_Messwerte (workflow)

OpenArchive_Export_berechneter_Datensaetze (workflow)

OpenArchive_Export_externer_Prognosen (workflow)

OpenArchive_Datenimport (workflow)

OpenArchive_Ereignisimport (workflow)

- External historical datasets
 - Time until drawdown of all forecasts (INCA, INCA 216, ALARO, AROME, GFS, RACE)
 - Water discharge (instantaneous, mean and ARMA corrected)

- Simulated datasets
 - Historical
 - Simulated water discharge (COSERO)
 - Forecasting
 - ARMA corrected straightened discharges
 - Reservoir level (actual, target level and target pre-release level)
 - Drawdown, Time to drawdown and time to drawdown (sum)
 - Advised discharge, advised water level

Open Archive folder structure

Open Archive Server

The Open Archive Server is used to transfer the file system into a catalog which can be used in FEWS to display the archived data

Overview of the archived data (Catalog)

Creating historical events

Verbund

Creating historical events

▶ Within the catalog historical events are defined in order to tag the archived data. These datasets are afterwards imported into a Delft-FEWS Client Server System

Searching, downloading and importing historical events

Searching, downloading and importing historical events

Displaying historical events

Experiences configuration Open Archive

- Complexity of the configuration for larger systems (also with use of templates)
- ▶ Limitations for the operational display of the archived data in the Version 2017.01
 - Forecasts
 - Rasters (available from the Version 2018.02)
 - Import of system states (available from the Version 2019)
- When changing or adding new configuration in FEWS also the archive configuration has to be updated

Any questions?

Thank you for your attention!