Interoperable Flood Sensors And Simulation with IoT Framework

Chief of Executive Officer 黃思瑋 Richard Huang Ph.D

Goal

Generate real time 2-D inundation map in secs.

Built and Verify Model

Stations in Tainan, Taiwan

Storm 11th, June, 2016

Flood at An-Jhong Station

Storm 11th, June, 2016

Flood at Chao-Huang Temple

Typhoon Megi, No.1617. 28th, Sep, 2016

Flood at An-Jhong Station

Typhoon Megi, No.1617. 28th, Sep, 2016

Flood at An-Jhong Station

Prepare Simulated 2-D inundation diagrams

 Generates thousands of simulated 2-D inundation diagrams by using SOBAK model based on historical event and DEM data.

Searching best fit diagram

- Search the best fit simulated inundation map based on the real-time observed water level data.
 - Consider the time-series effect as well.

$$\varepsilon_{H_{T_{b,i}}} = \frac{1}{N_{gage}} \sqrt{\sum_{k=1}^{N_{gage}} (\hat{H}_{sim,t^*} - H_{obs,t^*})^2}$$

Storm 11th, June, 2016. Tainan, Taiwan.

How do we achieve that?

- Simulation and Searching Algorithm
- Integrated Sensor
- Big data
- Self-learning.

Integrated Sensor

A traditional system structure of a water level monitoring station

A traditional system structure of a water level monitoring station

We need..

- Deploy sensors / station density
- Small space required
- Low cost
- Long system life time, includes sensor life and battery life.

IoT Techs bring us..

- Energy Harvesting technology
- Low power chip
- Low power WAN
- New Battery technology
- Industrial standard chip but consumer product price.

Smart Water Level Gauge

AnaSystem

- Four-In-One Integrated Solution: RF Admittance Level Transmitter + Solar Charger + LoRaWAN + Cloud Software

Advantages of Low Power WAN

WAN	3 G	LoRa
Max Transmit Range From AP to Client	~2Km	~15km
Power Conumption (Transmiting)	500mA – 1000mA	18mA
Power Consumption (Standby)	3.5mA	0.001mA
Time required from standby to transmitt complete	60 sec	1sec
Battery life 2000mAh (Transmitt 144 times / day)	25.6 hours	7.36 years

LIVE DEMO

How to built a system owned by many different users?

Data Sharing between Data centers

Data Sharing between Data Centers

Data Sharing between Data Centers

Num of	Num Of Data Exchange	
Servers	Software	
2	2	
3	6	
4	12	
5	20	

Multi-tenancy

Data Sharing

Sharing data without developing any program

Big Data

Storage / Write / Read

All data must be in operational database always

The foundations to deal with Big data

Choose proper database for time series data

Distributed system – Extensible / Parallel read and write

The foundations to deal with Big data

Speed Comparison

- Condition and Environment
 - Intel i5, RAM 8G, OS: Linux
 - Record a physical quantities' value every second.
 - 60 x 60 x 24 x 30 ~ 2.6M Data Points / month
- Write
 - MySQL: about 7 min
 - TSDB: about 4 sec
- Read
 - MySQL: about 4 min
 - TSDB: about 7 sec

Future Plans

- Shorten the searching time
- Improve resolution
- Generates results with proper data format for different users
 - Insurance company
 - Options and Futures
 - Navigation system
 - Logistic company
- Create a model-self-adaptive system based on received new data.

Our Team

- Dr. Huang
 - CEO, Anasystem, Inc (www.anasystem.com.tw)
 - richard@anasystem.com.tw
- Dr. Chang
 - Professor, Taipei Technology University, Taiwan
 - chchang@ntut.edu.tw

Our Team

- Dr. Wu and Dr. Hsu
 - Researchers, National Center for High-Performance Computing.
 - sjwu@nchc.narl.org.tw
 - hsu_nelson@nchc.narl.org.tw