

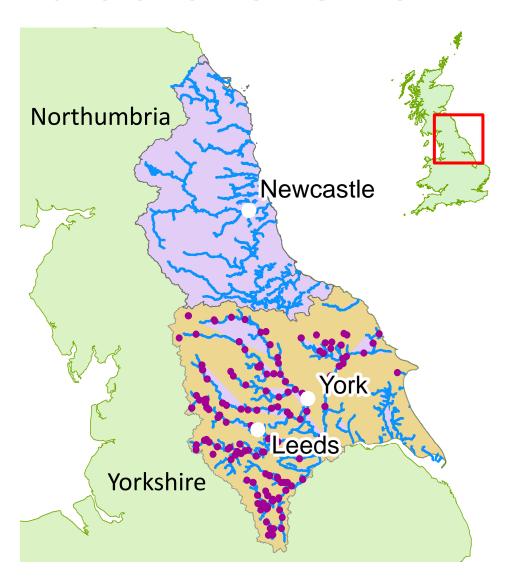
About this talk

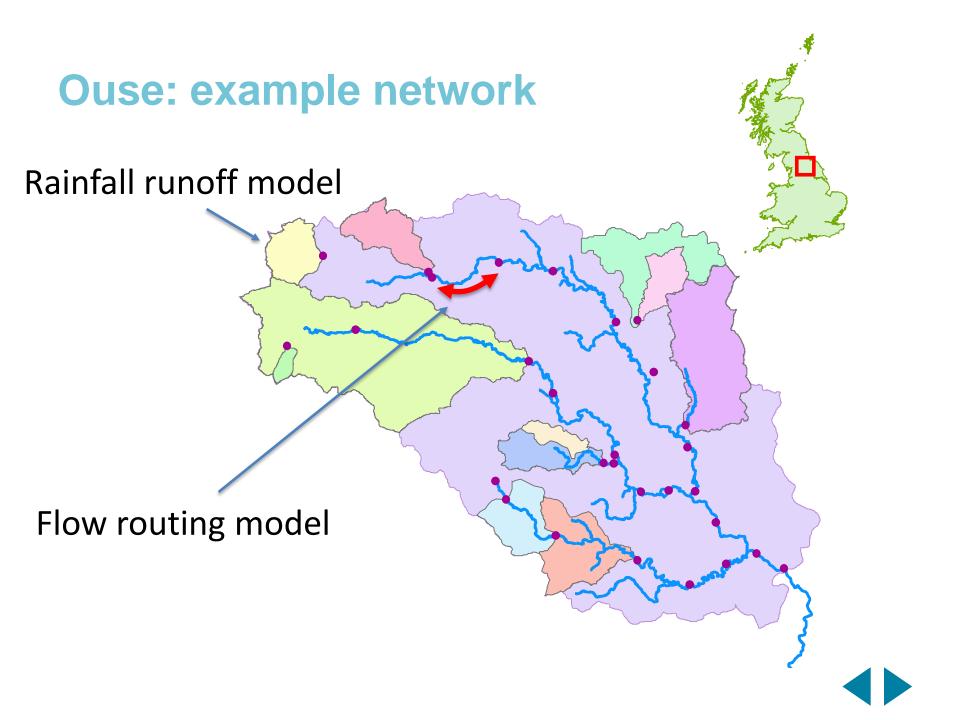
Some background

Why model performance data is so useful

Measures

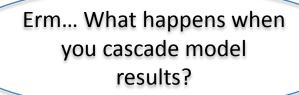
Process


The future



Some background

Northumbria and Yorkshire


Model development for RFFS

- Develop individual models
- Calibrate error model
- Supplier integrates
- Hope for the best

Awkward questions

...and then what happens when you try and predict into the future?

Why can't you do this?

Early attempt

Figure 6.6 : No error correction but foreknowledge of rainfall

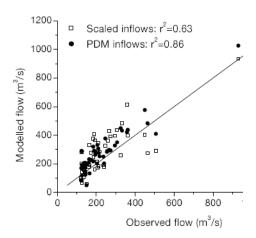
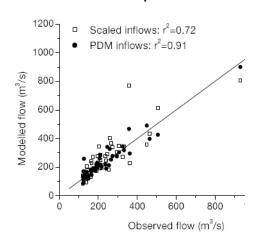
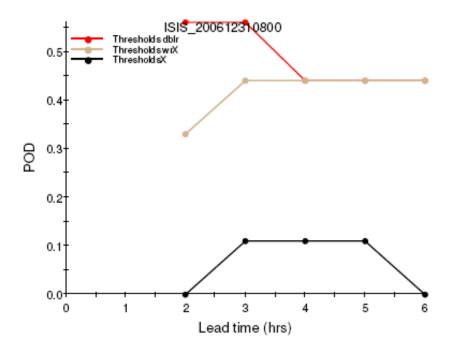
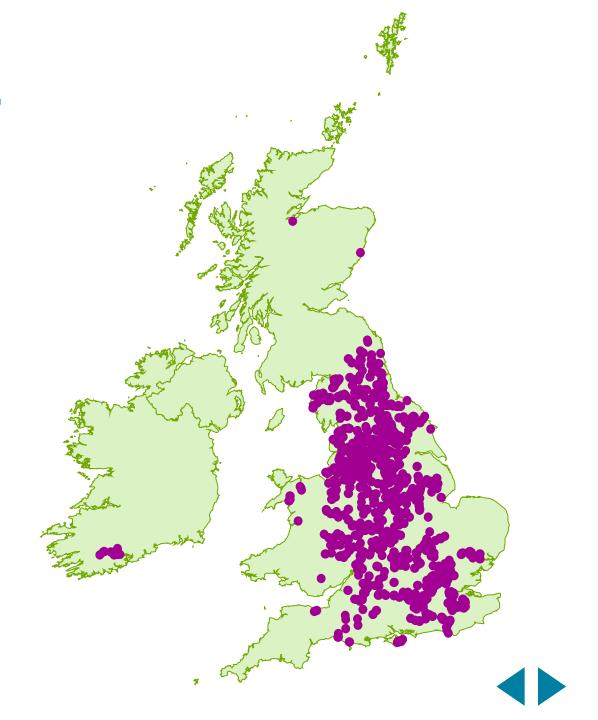
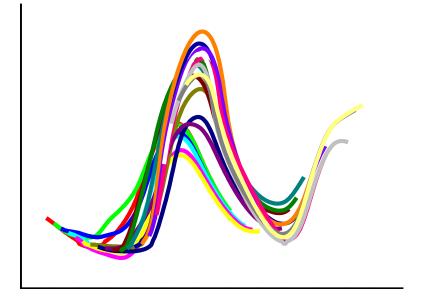




Figure 6.8 : Data available till 3 hours k

Real time performance measures for Colliers


POD table

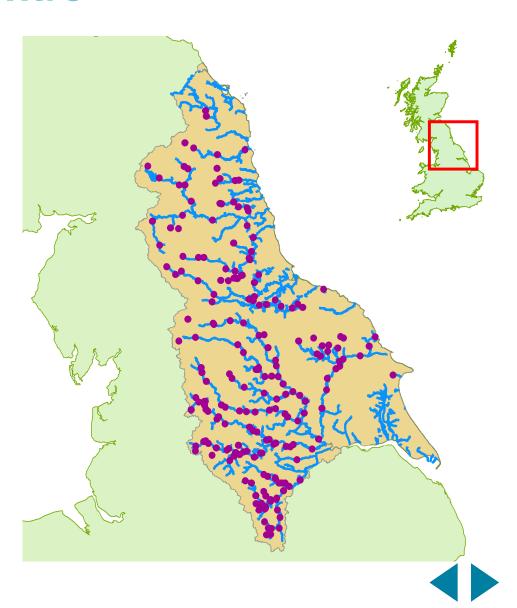
Scenario	N	POD at increasing lead time (hrs)								
		t-2	t-3	t-4	t-5	t-6				
Thresholds dblr	9	0.56	0.56	0.44	0.44	0.44				
Thresholds wrX	9	0.33	0.44	0.44	0.44	0.44				
ThresholdsX	9	0.00	0.11	0.11	0.11	0.00				

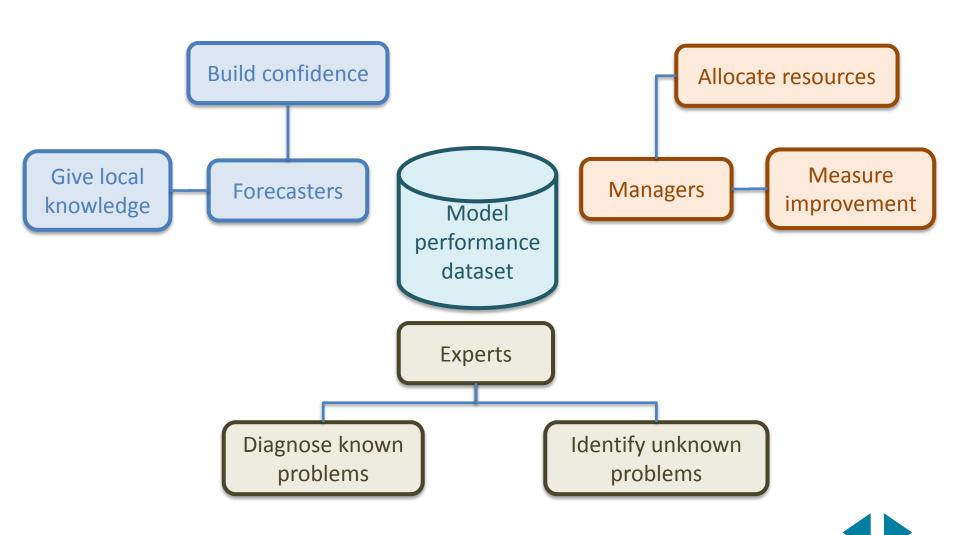

And by 2016....

>950 locations tested
Well developed software, skills and methods

Four levels of testing

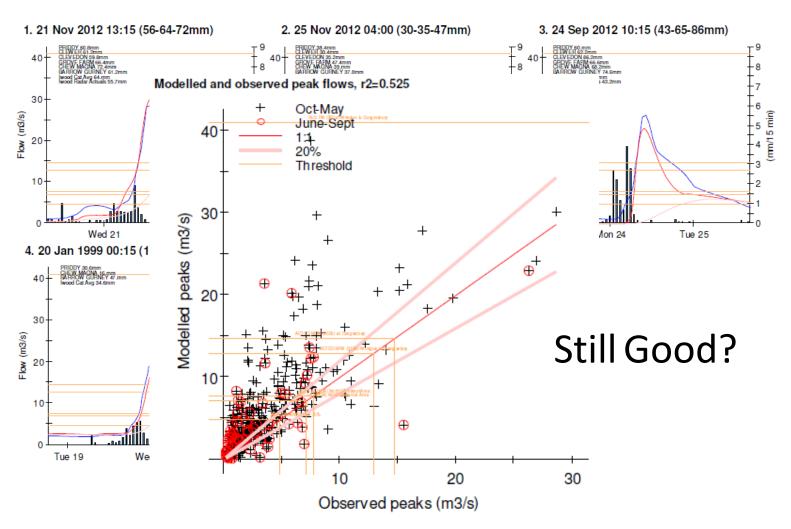
- Individual component
- Cascaded components
- With data assimilation
- With forecast rainfall




Why performance data are useful

Leeds forecast centre

- Operating since early 1990s
- 210 forecast locations
- 274 models


Uses for performance data

How do you quantify performance?

How do you quantify performance?

Types of simulation

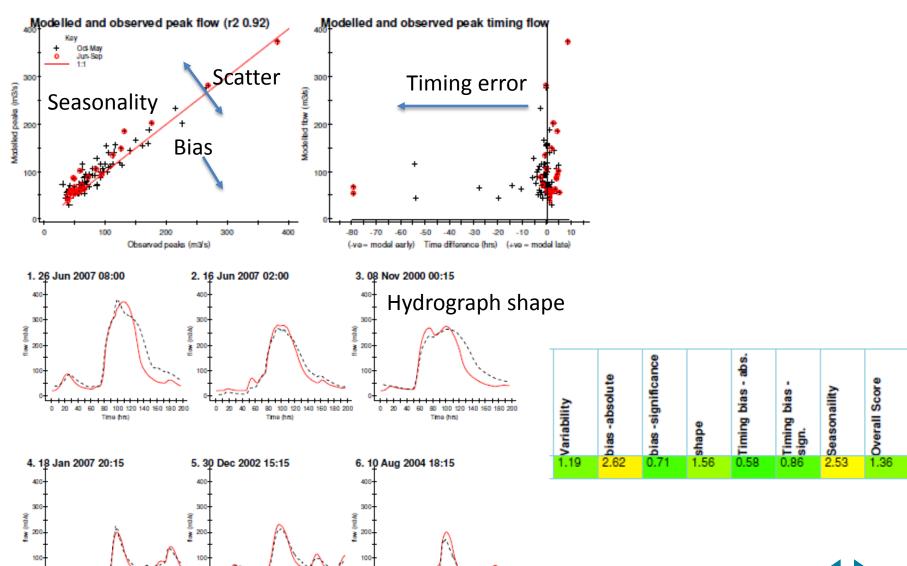
- Real time
- Simulation

Questions forecasters are asked

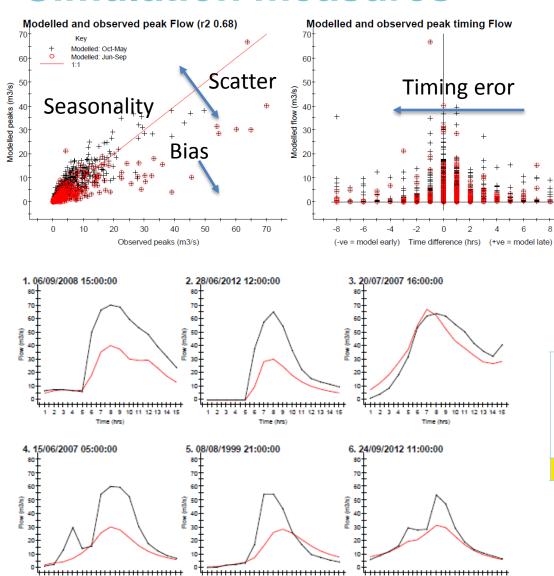
Real time measures

- Probability of Detection (POD)
- False Alarm Rate
- Peak error

Categorising performance


Grade ²	Description ¹	Probability of Detection (POD)	False Alarm Rate (FAR)
A+	Exceeds targets	POD ≥ 0.8	FAR ≤ 0.2
Α	Meets targets	0.8 > POD ≥ 0.7	0.2 < FAR ≤ 0.3
	Meets targets with	POD ≥ target with ±0.2m	FAR ≤ target with ±0.2m
В	tolerance	tolerance	tolerance
С	Does not meet target	0.7 > POD ≥ 0.5	0.3 < FAR ≤ 0.5
	Significantly below		
D	target	0.5 > POD ≥ 0.3	0.5 < FAR ≤ 0.7
E ²	Poor	POD < 0.3	FAR > 0.7

Simulation measures


60 80 100 120 140 160 180 200

60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180 200

Simulation measures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

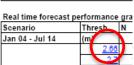
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Variability	bias -absolute	bias -significance	shape	Timing bias - abs.	Timing bias - sign.	Seasonaility	Overall Score
2.79	3.49	3.54	1.38	2.61	4.00	4.00	2.97

Visualisation

Darlaston

DODO


Shallowford

Great Bridgford MCRM

Middle Trent

3.45

ISIS

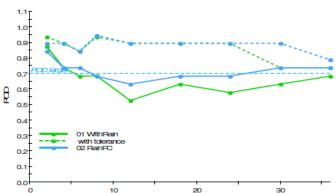
Location ID: Network:

Model Type:

Derby St Marys DODO

Willington

Cableway


DODO ISIS

Aston Bridge

01 WithRain 3.45 Peaks Jan 04 - Jul 14

02 RainFC

Real time performance measures for 40192.66H.rated.forecast

Lead time (hrs)

Great Haywood DODO

Milford DODO

) table; threshold tested = 2.66m

enario	N	POD	at inc	reasin	g lead	l time	(hrs)				
		t-2	t-4	t-6	t-8	t-12	t-18	t-24	t-30	t-36	
WithRain	19	0.88	0.74	0.68	0.69	0.53	0.63	0.58	0.63	0.68	
RainFC	19	0.84	0.74	0.74	0.68	0.63	0.68	0.68	0.74	0.74	

the number of observed crossings used to calculate POD olute POD values are tabulated. POD values with a tolerance of 0.2 are also plotted as dashed lines, i.e. if a ulation gets within a specified distance of the threshold, then it counts as a hit

Modelled and observed peak Flow (r2 0,56) Key Hodeled: Oct-May Modelled: Jun-Sep 1:1		Modelled and observed peak timing Flow
(%E m) 40 + + + + + + + + + + + + + + + + + +	•	50- 40- 40- + # # # #
10 + + + + + + + + + + + + + + + + + + +		30 + + + + + + + + + + + + + + + + + + +
0 10 20 30 40 50 60 70 80 Observed peaks (m3/s)	90	-8 -6 -4 -2 0 2 4 6 (-ve = model early) Time difference (hrs) (+ve = mo

	1.1	0.6	0.2	1.5	2.4	3.8	1.7	1.5	WITH upstream error correction
	1.3	2.5	0.5	0.6	2.3	2.2	2.8	1.5	
	2.1	4.0	2.1	1.0	1.5	1.1	4.0	2.1	
	1.5	0.2	0.1	1.2	0.1	0.1	2.2	1.0	
	1.6	3.3	2.1	2.2	2.2	2.7	3.6	2.3	
	1.5	2.4	0.8	1.8	3.4	3.8	4.0	2.3	
	1.0	4.0	2.3	1.0	0.7	1.0	2.0	1.4	
	3.3	3.4	3.2	1.5	2.2	3.2	4.0	2.9	
	3.0	3.0	2.5	1.6	1.9	3.8	1.1	2.4	
	2.2	0.7	0.4	1.2	1.8	3.9	4.0	2.1	
	1.9	2.9	2.4	2.7	1.4	3.5	2.9	2.5	
	1.0	2.7	0.6	0.8	1.8	1.9	2.2	1.3	
	2.6	2.3	1.8	2.4	1.1	4.0	2.3	2.4	
	1.6	1.1	0.5	1.8	0.8	0.7	2.3	1.4	
	1.3	1.4	0.6	2.1	2.4	4.0	1.6	1.8	
	2.7	0.4	0.7	1.5	0.5	2.3	4.0	2.1	
	2.5	1.7	2.1	1.9	0.2	0.5	3.5	2.0	
	2.8	3.5	3.5	1.4	2.6	4.0	4.0	3.0	
•	4.4	4.0	2.4	4.4	4.5	0.0	0.7	2.0	

Explanation of performance grades Explanation of model scores

Visualisation

Forecasters

Real time forecast performance grades

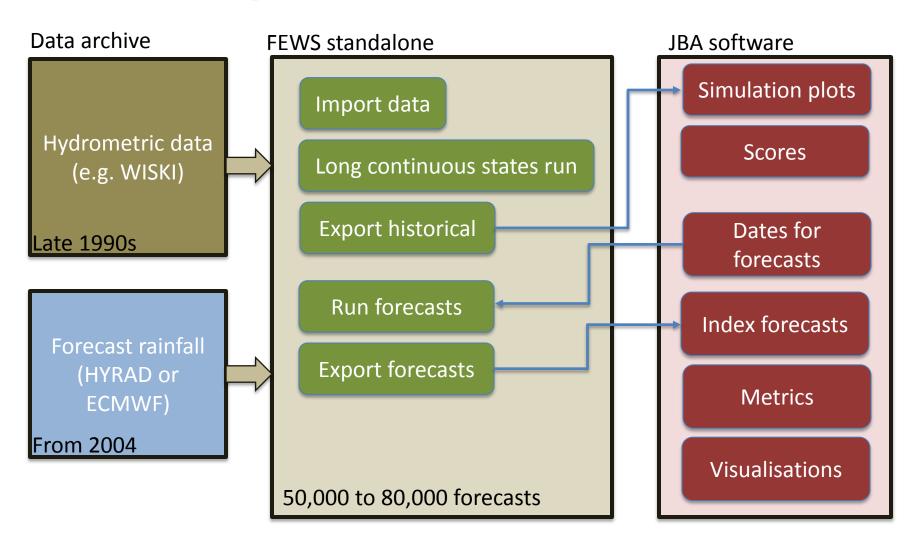
Scenario	Thresh.	N	Lead time (hrs) [grey cell = indicative catchment response time]									
Jan 04 - Jul 14	(m)		2	4	6	8	12	18	24	30	36	
	2.66	19	В	В	Α	Α	Α	A+	В	В	В	
	2.7	16	A+	Α	A+	A+	A+	В	В	В	В	
	2.88	10	A+	Α+	Α	Α+	A+	A+	В	В	8//	
01 WithRain	<u>3.25</u>	5	В	В	В	В	В	В	В	В		
	<u>3.45</u>	2	B	B	B	B	B///	B	B//	B	C	
	3.8	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Peaks		Α	Α	Α	Α	Α	В	В	В	Α	
Jan 04 - Jul 14	(m)											
	<u>2.66</u>	19	В	В	Α	Α	Α+	A+	Α	В	В	
	2.7	16	A+	Α	Α+	A+	A+	A+	В	В	В	
	2.88	10	A+	A+	Α	Α+	A+	Α+	Α	В	B//	
02 RainFC	<u>3.25</u>	5	В	В	В	В	В	В	В	Е	$\langle \rangle \rangle$	
	<u>3.45</u>	2	8///	В	В///	B	B	B///	В	B///	0	
	<u>3.8</u>	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Peaks		Α	Α	Α	Α	Α	В	В	В	Α	

Visualisation

Managers

See footnote for an explanation of table column headings

Forecast location performance commentary


ID A	
JBA	
consulti	10

								, ,						consulting
			/		/	ostre os Rai	•//		//,			ring ties	205 A	Me Die Maria Code Overview Recommendations
				. /	DOUG	69	1 6	gill,	iability Bi	as ans	0° /	inghis	s at on air	N. A. S.
< ◊	Site	River	Type	/65	8 /c	05/4°	Car In	11/1/19	No.	⁸⁶ /55	age (m/ 56	o / d	Overview Recommendations
2516	Halesowen	Stour	MCRM	2	В			2.2		3.4		3.6		MCRM simulating the headwaters of the Upper Stour. Catchment urbanised Consider modelling the urban response separately to improve the model's performance in smaller events
2083	Stourbridge	Stour	DODO	2.31					2.3					DODO routed flows from Halesowen, with significant urban lateral inputs from an MCRM For lateral inflows, consider modelling the urban response separately to improve the model's performance in smaller events particularly. Calibrating the model's wavespeed may improve
2641	Wightwick	Stour	MCRM	2	В	В		2.4	1.0		1.2		2.2	Small MCRM simulating the Upper Smeston. Fast consider recalibration to improve the hydrograph shape (this will also require a reduction in volume of runoff)
2706	Wombourne	Stour	MCRM	2	Α	D	E	3.0	2.0	3.7	2.0	4.0	3.2	Small MCRM simulating the Wom Brook. Fast response, with an obviously early urban runoff peak separately to improve the model's performance in smaller events particularly.
2067	Swindon	Stour	DODO	4		В	П			1.4			1.9	DODO routes flows from Wombourne and Wightwick with additional lateral inflow from an MCRM. Observed hydrographs quite 'flat topped', indicating storage or bypassing Understand the cause of the 'flat topping' in the observed series and decide whether it needs to be incorporated into the DODO model
2084	Stourton	Stour	DODO	8.5	A+	В	В	1.2	3.2	1.1	1.0	3.6	1.8	DODO routing flows from Swindon and Stourbridge with some lateral inflow from an MCRM timing bias by adjusting the DODO's inputs and wareful (although low priority)
														DODO routing flows from Stourton with additional lateral flow from MCRM Investigate the source of the bias and then correct.

How can I get my hands on this stuff?

What's the process?

What specialist skills do I need?

- FEWS configuration
- Software for reporting/processing
 - but could use FEWS performance module

The future

In Future?

- Testing now the norm
- National results database
- Changing measures
- Make it easier to re-run forecasts (archive)
- Other uses for results (e.g. QR)

Thanks for listening!