IoT Flood Sensors in FEWS-Taiwan and Citizen Science Jhih Cyuan Shen FondUS.inc and NTUT Delft-FEWS User day 2020.11.09 ## Main item - The main causes of flood in Taiwan - Operational Flood inundation Forecasting - IoT Flood Sensors - Model Verification and Validation ## The Main Causes of Flood in Taiwan - Typhoon and Monsoon Heavy Rainfall - Short Duration Intense Rainfall - Urban and Rural Drainage System - Exceed the Capacity Town Area Average Rainfall Accumulated: 780-950mm/2day Maximum: 92-121mm/hr @PTS Radar Rainfall 10min Max: 108mm/hr 1hr Max: 87.8mm @eranews50 ## **Observation Data Source** Radar station 10 station RainGauge 1016 gauges IoT Flood Sensors 1205 gauges # **Operational Flood inundation Forecasting** - Operational forecasting system(24/7) - Every 3hr Provide The Next 6hr Forecast - VM: 120 (FFS+MC+Archive) - Taiwan 19 Area - This year 15 Areas - Next year 4 Areas - SOBEK - 57 sobek projects - RR(SCS)+1D+2D # **Operational Flood inundation Forecasting** Forecast Shell Server: 71 vm - Data source from - WRA and County and City Government - Flood Data monitoring and check - Confirmation of Flooding(Time, Area, Depth) - Compare the Results of Model Run Complete spatial and temporal rainfall distribution information and flooding high water marks 2018908 Event Rainfall profile (along the road) Get the Complete IoT flood sensor flooding observation data (Location, Time, depth) 20190813 Event photo: CNA #### **Depth and Flooding Area Relation** Get the Complete model flooding simulation results - Area, Depth, Volume Design Rainfall (Lag time 12 hour) #### **Depth and Flooding Area Relation** Get the Complete model flooding simulation results - Area, Depth, Volume Design Rainfall (Lag time 12 hour) #### **Depth and Flooding Area Relation** Get the Complete model flooding simulation results - Area, Depth, Volume Design Rainfall (Lag time 12 hour) #### Verification with Real event #### 20180823 Event - Regular model data update Verification - For Every Year flood event data Validation - Archive Event IO Development - The convenient way to get simulation and observation for the event - Citizen Science - Crowdsourcing could collect more event information -Archive Event IO Development - Open Archive 2018.02 - Microservices #### -Archive Event IO Development - Base on microservices - Search for Elasticsearch : Location Id ,time... - Reader for TDS reading \ transformation \ Clip.. - Workflow for base service - Package Service for different application - General REST Client module #### -Archive Event IO Development #### Search Service - Localization Taiwan time zone to Archive UTC0 * - For different user - Search Meta-fields from Elasticsearch - Search by time-range, locationId, file Name - Observations: time-range by start, end - External Forecasts : time-range by timezero - Simulations time-range by timezero -Archive Event IO Development #### Reader Service - Read the NetCDF from THREDDS - Read by relative path - Bounding clips by user request - Mapping to JSON format - Grid type dataset → Compress Grid Stack - Station type dataset → PI-JSON -Archive Event IO Development #### Workflow - Workflow Process of Archive Event IO - **Combine** base service like FEWS workflow - Search Meta-fields from Search Service - Mapping to Meta-fields to query Reader Service Package Service (eq: download dataset, analysis) **Return clip Grid or Station** # Event View UI Layer #### -Citizen Science - For the Model Verification and Validation - Crowdsourcing commutag - Flooding (High-Water Mark and tag) - Water Quality - Photo - The event about Who, What, When, What, Why Flooding Water Quality Dashboard #### **Share and Cooperation** Dr. Jhih Cyuan Shen coop.shen@gmail.com https://www.facebook.com/coop.shen https://twitter.com/JhihCyuan FondUS.inc https://www.facebook.com/fondus.inc - ✓ We are happy to share experiences. - ✓ Open and Cooperation could make the Hazard Prevention more complete. Water Resources Agency Water Resources Planning Institute