

Towards more accurate riverine flood forecasting over the Lower Mekong Basin

Miguel Laverde (ADPC), Chinaporn Meechaiya (ADPC), Arjen Haag (Deltares), Martijn Kwant (Deltares)

CONNECTING SPACE TO VILLAGE

SERVIR Hub Network

WEATHER AND CLIMATE

WATER RESOURCES AND DISASTERS

LAND COVER / LAND USE AND ECOSYSTEMS

AGRICULTURE AND FOOD SECURITY

Supporting a better riverine and flash flood forecasting for Lower Mekong Region

- The MRC Flood Early Warning System (MRC-FEWS) is a modular hydrological- hydraulic model created to provide short and medium-term early warnings flood updates for each member countries.
 - Dry season: weekly forecast
 - Flood season: Daily forecast

Objectives:

 Improve the accuracy of the NRT satellite-based rainfall product for Short-term flood riverine forecast.

 Incorporate the state of the art bias corrected CHIRPS-GEFS for Mediumterm flood riverine forecast.

Short-term riverine forecast:

Operational bias correction tool for the MRC FEWS system

Characteristics:

- Python based tool (Open access)
- Working with multiple bias correction methods
- Adjusted to work with MRC daily information
- Working operationally or date range based
- Evaluate the performance based on R, RMSE and BIAS

Bias correction schemes:

Uniform Distribution
 Transformation (DT) (Bower, 2004)

2. Spatial Bias corrector (SB): (Immerzeel (2010)

- 3. Spatiotemporal Distribution Transformation
- 4. Gamma Quantile Mapping (V 1.3)

Performance of GPM-BICO

Results:

Hydrological impact

GPM-BICO into FEWS:

Technical training GPM-BICO

The Regional Flood Management and Mitigation Centre (RFMMC)

27 May 2019, Phnom Penh, Cambodia

Medium-term riverine forecast:

NOAA Daily GFS Forecast Data

The Global Forecast System (GFS) precipitation data are provided on a daily basis by the NOAA Climate Prediction Center.

- 7 day forecasts of precipitation
- 0.25 degree resolution

State of the art bias corrected rainfall forecast product: CHIRPS-GEFS

Bias-corrected and downscaled version of NCEP Global Ensemble Forecast System precipitation forecasts.

Daily 5-day, 10-day, 15-day Forecasts 5 km resolution

GEFS

CHIRPS-GEFS

Source https://nasaharvest.org

CHIRPS-GEFS version 2.0

https://www.chc.ucsb.edu/data/chirps-gefs

Daily simulations 15 days rainfall forecast (Before 5 days latency)

October 1st, 2020 to present are currently available

CHIRPS-GEFS in SERVIR-MEKONG

Available in: https://climateserv.servirglobal.net/

Performance of CHIRPS-GEFS and GFS

- O Monsoon seasons 2017-2019 (Jun to October)
- O 1 6 days forecast (0.25 degrees)
- O **Reference data** GPM-IMERG Final version bias corrected

ERROR METRICS

Standard metrics

- Root Mean Square Error
- Bias
- Correlation coefficient

Categorical metrics

- POD
- FAR
- CSI

Temporal analysis

RMSE

Correlation coefficient

BIAS

Temporal analysis

Spatial analysis

POD

Spatial analysis

1-FAR

GFS

CHIRPS-GEFS

Spatial analysis CSI

GFS

CHIRPS-GEFS

Results: Extremal

CHIRPS-GEFS

CHIRPS-GEFS into FEWS

Summary

- SERVIR-Mekong supports MRC in accessing the latest technology for near-real-time (NRT)
 monitoring and rainfall forecast prediction for the FEWS system
- Results for bias correction GPM-BICO tool showed a reduction up to 50% of the bias and RMSE errors in NRT IMERG data. Results in the hydrological model suggested that this reduction considerable improved the streamflow forecast.
- CHIRPS-GEFS rainfall forecast provides a high resolution daily forecast information up to 15 days with 5 km spatial resolution
- In comparison with the GFS, CHIRPS-GEFS displayed the lowest temporal and spatial error with a longer forecast during monsoon seasons
- This encouraged MRC to implement GPM-BICO and CHIRPS-GEFS into their Flood Forecasting System in an operational setting to improve the lead time and accuracy of riverine Flood Early Warning in the Lower Mekong Basin.

AGRICULTURE AND **FOOD SECURITY**

LAND COVER / LAND USE AND ECOSYSTEMS

WEATHER AND CLIMATE

WATER RESOURCES AND DISASTERS

Decision Support Tools

These high quality user-tailored decision support tools and applications have been developed to address on-theground issues, empowering decision-makers to act locally on climate-sensitive challenges such as disasters, agriculture, water management, ecosystem protection and land use.

Surface Water Mapping Tool

Eco-Dash Changes to vegetation can have a significant impact on health, resilience.

Historical Flood Analysis Tool

Regional Drought and Crop Yield Information System

ClimateSERV

This tool allows development practitioners scientists/researchers

Gender Equality Monitoring (GFM) Platform

https://github.com/Servir-Mekong/

miguel.Barajas@adpc.net chinaporn.m@adpc.net <u>arjen.Haag@deltares.nl</u> martijn.kwant@deltares.nl

