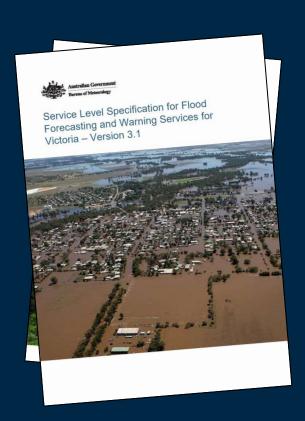
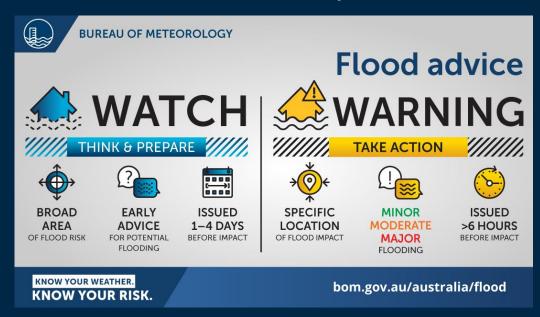


Outline

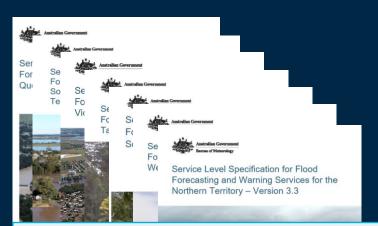

- What is the Bureau Service performance analysis and which metrics are evaluated?
- How do we use PAT to support analysis? And what's new since 2021?
- Benefits of PAT bringing in a new era of performance analysis and continuous service improvements.


*PAT – Performance Analysis Tool

What is Bureau Flood Service Performance Analysis?

The performance analysis compares flood watches, warnings and forecasts against key targets that are defined for each product and forecast location around Australia.

Why do we evaluate our service performance?



Bureau of Meteorology

- To ensure we're always looking at how we can improve the flood warning service for the community!!
- Bi-monthly performance reporting to the Bureau executive team (internal)
- Annual Reporting (external)
- Flood Warning Consultive Committee (FWCC) meetings with emergency management partners (limited external)
- Annual or Special Climate and Water Statement (external)
- Flood event specific summaries (limited external, external)
- Ad hoc requests (internal, limited external)

What performance metrics are used for evaluation?

Bureau number	AWRC Number	Forecast location	Flood classification (m)			Prediction	Target lead	70% of peak			
			Minor	Moderate	Major	type	Time	Trigger height (m)	forecasts within		
403 – Ovens River Basin											
583148	403205	Bright	3.0	3.6	4.3	Qualitative	3 hrs	>3.0m	n/a		
082112	403250	Eurobin (Ovens R)	4.5	5.5	6.0	Quantitative	3 hrs	>4.5m	+/- 0.3m		
582014	403230	Rocky Point	3.2	4.4	5.2	Quantitative	6 hrs	>3.2m	+/- 0.3m		
582004	403223	Docker Rd Bridge	3.7	3.95	4.1	Quantitative	6 hrs	>3.7m	+/- 0.3m		
582002	403213	Greta South	2.8	4.2	6.0	Qualitative	3 hrs	>2.8m	n/a		
582033	403200	Wangaratta (Ovens R)	11.9	12.4	12.7	Quantitative	9 hrs	>11.9m	+/- 0.3m		

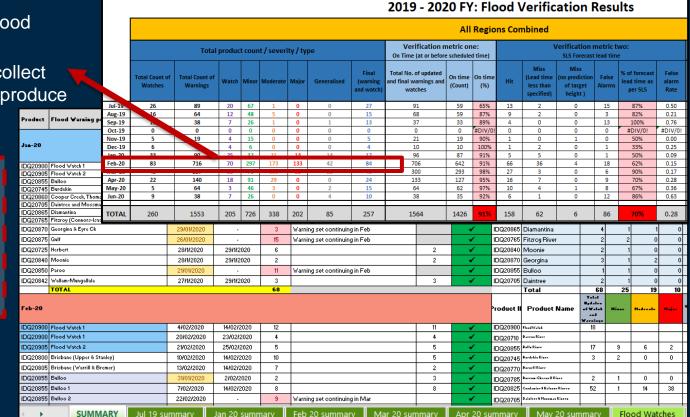
<u>Timeliness:</u> % flood watches and flood warnings issued to customers on time (before or at the stated next issue time) - target 97%

<u>Lead time:</u> % trigger height exceedances for which target lead time was provided to customers as per Service Level Specifications – target 70%

Accuracy: % peak predictions provided to customers within specified range (e.g. ±0.3 m) as per Service Level Specifications – target 70%

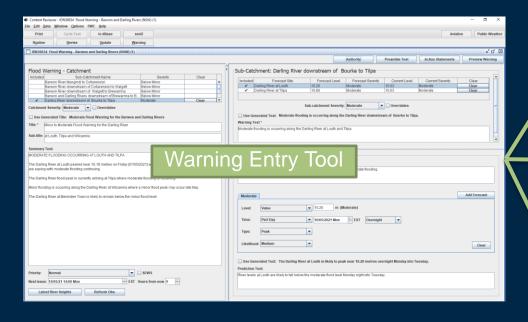
In a past life: Manual Performance Analysis

February 2020


716 Flood Warnings, 84 Flood Watches

Approx. 25 days effort to collect the performance data and produce

metric analysis

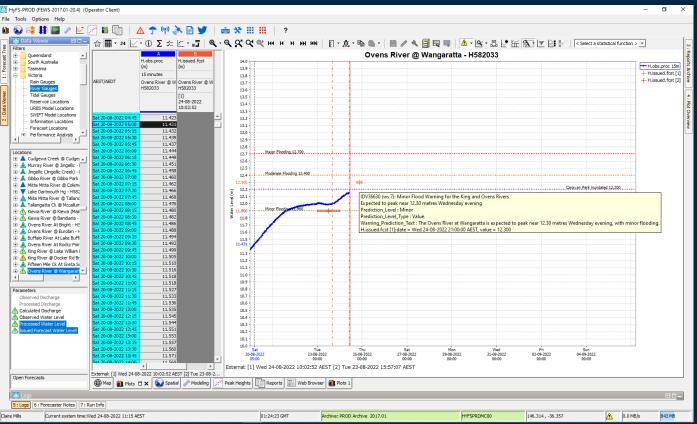

January 2021 to May 2022 Nearly 8000 products issued.

Similar to the amount issued in the 4 years prior (2017-2020).

Issue Flood Warnings

6- Comment NON-HAZARD ELEMENTS

(Comment | locale[NSW_EV001]/period[variable] | Comment | non-warning-info-elements-exist='yes'

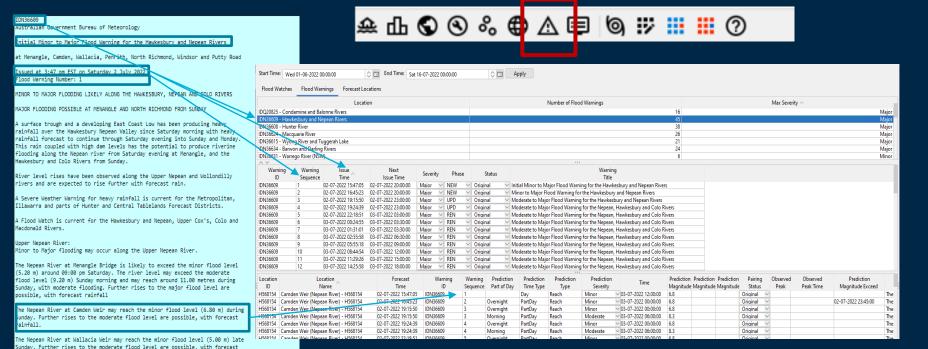

On Comment

▲ forecast-period

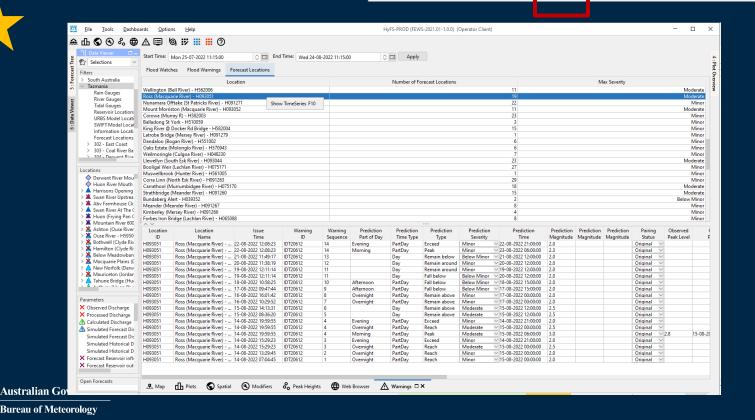
Import to HyFS (FEWS)

FEWS User days 2021 – Next steps

FEWS User days 2021 (presented by Wen Wang) identified a number of further improvements:


- Automate the process as much as possible
- Improve algorithms, including peak selection
- Improve PAT display functionality for linking warnings with predictions for individual locations
- Better visualisation and filters from Forecast Tree
- Create peak height correlations with the peak identified in PAT
- Investigate metrics for flood watch products

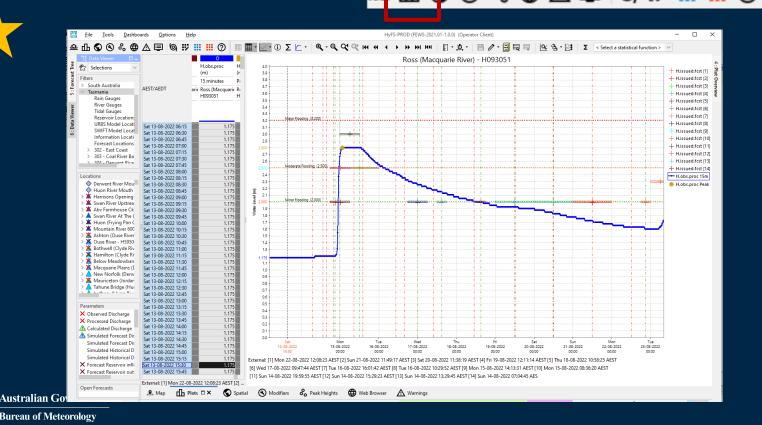
Performance Analysis Tool (PAT) – Warnings import to FEWS


The Nepean River at Penrith may reach the minor flood level (3.90 m) Sunday evening. Further rises possible with forecast rainfall.

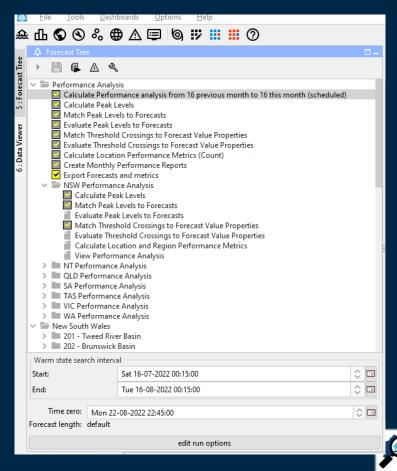
Minor to Major flooding may occur along the Lower Nepean and Hawkesbury River.

Hawkesbury and Lower Nepean River:

PAT — Linking forecasts with predictions for individual locations

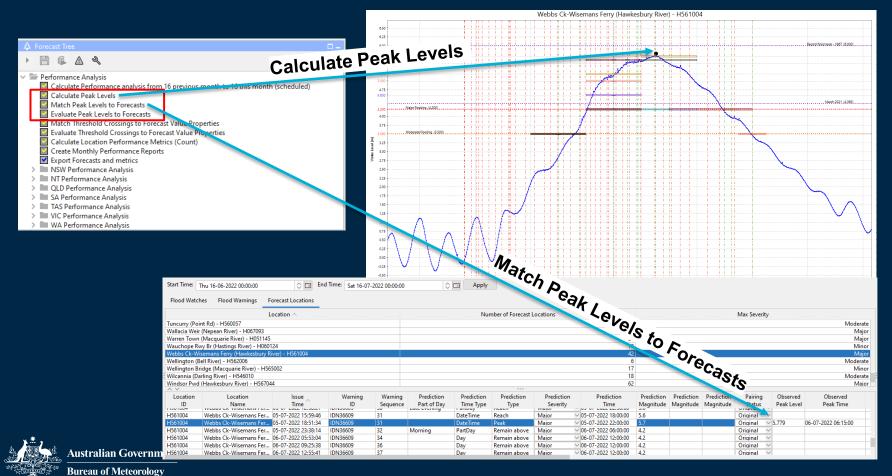


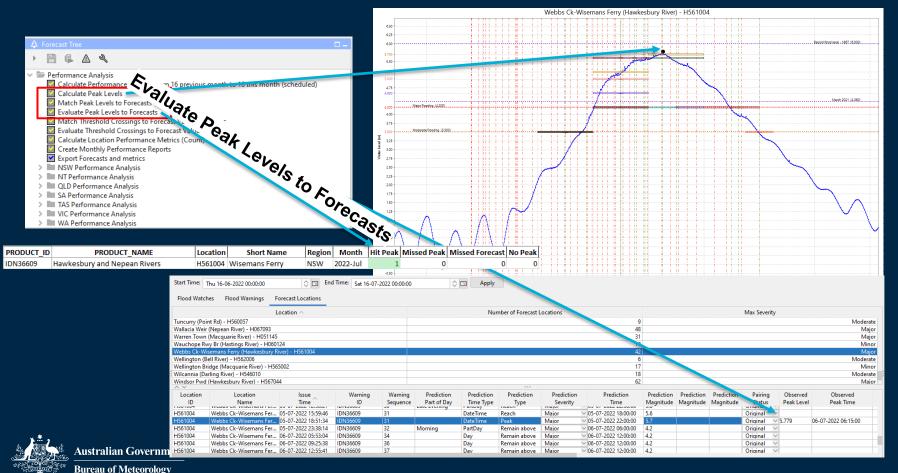
PAT – Linking forecasts with predictions for individual locations



Automate wherever possible!

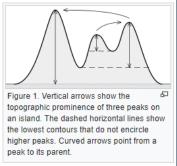
PAT Workflows


- Performance analysis in Forecast Tree
- Specialised user group to see and use performance nodes
- Automatically calculates performance KPIs for each month on the 16th of the month.
- Still requires quality control via Warnings Display

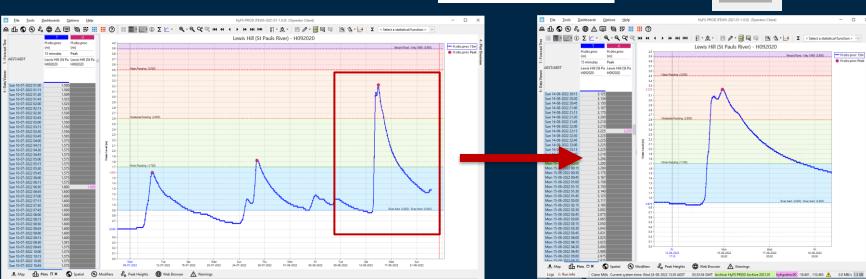


Performance Analysis Tool (PAT) Workflow – Peak Accuracy

Performance Analysis Tool (PAT) Workflow – Peak Accuracy



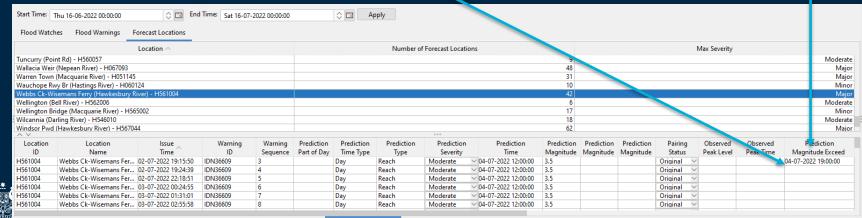
Improved algorithms for peak selection


Peak selection algorithm includes:

- Peak forecast trigger height
- Minimum prominence
- Configurable for each location

False peaks still occur!

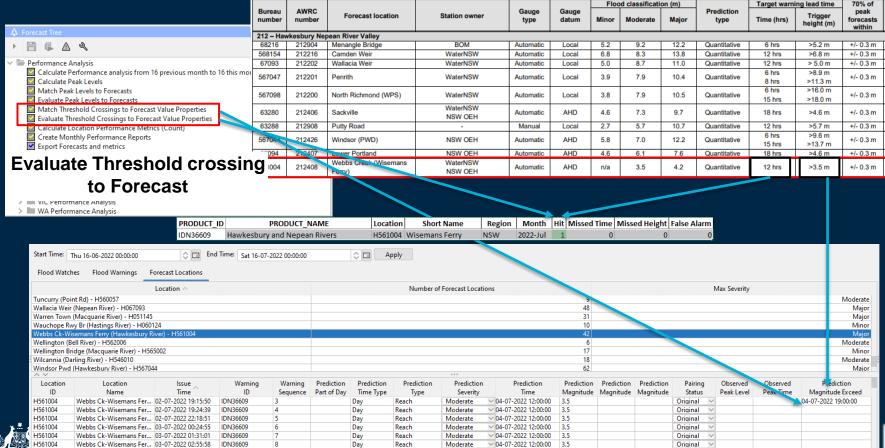
During the QAQC stage, peaks can be removed via the plot window in edit mode



Performance Analysis Tool (PAT) Workflow – Lead Time

							Flood classification (m)			Target warning lead time		70% of		
	Bureau number	AWRC number	Forecast location	Station owner	Gauge type	Gauge datum	Minor	Moderate	Major	Prediction type	Time (hrs)	Trigger height (m)	peak forecasts within	Priority
↓ Forecast Tree	212 – Hav	kesbury Ner	pean River Valley										within	
	68216	212904	Menangle Bridge	BOM	Automatic	Local	5.2	9.2	12.2	Quantitative	6 hrs	>5.2 m	+/- 0.3 m	High
	568154	212216	Camden Weir	WaterNSW	Automatic	Local	6.8	8.3	13.8	Quantitative	12 hrs	>6.8 m	+/- 0.3 m	High
Performance Analysis		212202	Wallacia Weir	WaterNSW	Automatic	Local	5.0	8.7	11.0	Quantitative	12 hrs	> 5.0 m	+/- 0.3 m	High
 Calculate Performance analysis from 16 previous month to 16 this mo Calculate Peak Levels 	567047	212201	Penrith	WaterNSW	Automatic	Local	3.9	7.9	10.4	Quantitative	6 hrs 8 hrs	>8.9 m >11.3 m	+/- 0.3 m	High
Match Peak Levels to Forecasts Evaluate Peak Levels to Forecasts	567098	212200	North Richmond (WPS)	WaterNSW	Automatic	Local	3.8	7.9	10.5	Quantitative	6 hrs 15 hrs	>16.0 m >18.0 m	+/- 0.3 m	High
Match Threshold Crossings to Forecast Value Properties Evaluate Threshold Crossings to Forecast Value Properties	63280	212406	Sackville	WaterNSW NSW OEH	Automatic	AHD	4.6	7.3	9.7	Quantitative	18 hrs	>4.6 m	+/- 0.3 m	High
☐ Calculate Location Performance Metrics (Count)	63288	212908	Putty Road	-	Manual	Local	2.7	5.7	10.7	Quantitative	12 hrs	>5.7 m	+/- 0.3 m	High
 Create Monthly Performance Reports Export Forecasts and metrics 	5670-11	212426	Windsor (PWD)	NSW OEH	Automatic	AHD	5.8	7.0	12.2	Quantitative	6 hrs 15 hrs	>9.6 m >13.7 m	+/- 0.3 m	High
> MSW Performance Analysis	67094	212407	Lower Portland	NSW OEH	Automatic	AHD	4.6	6.1	7.6	Quantitative	18 hrs	>4.6 m	+/- 0.3 m	High
> III NT Performance Analysis > III QLD Performance Analysis	561004	212408	Webbs Creek (Wisemans	WaterNSW NSW OEH	Automatic	AHD	n/a	3.5	4.2	Quantitative	12 hrs	>3.5 m	+/- 0.3 m	High
> M SA Performance Analysis														

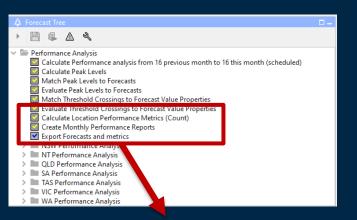
Match Threshold crossing to Forecast Value



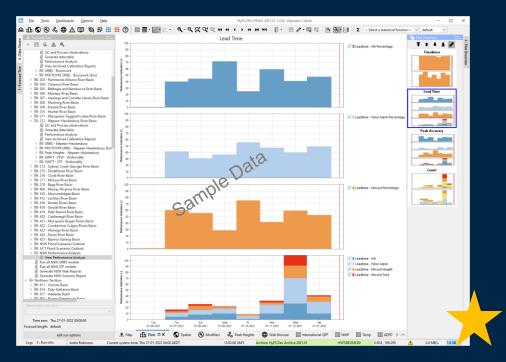
> TAS Performance Analysis

> VIC Performance Analysis
> WA Performance Analysis

Performance Analysis Tool (PAT) Workflow – Lead Time



Priority


High

Performance Analysis Tool (PAT) Workflow – Results

utoSave 💽	■ 日り・ ▽・;	sv • 🔎	Search (Alt+Q)						
А	В	С	D	E	F	G	н		
Location	Short Name	Region	Month	Hit	Missed Time	Missed Height	False Alarm	Ī	
H040443	Maryborough	QLD	2022-Mar	0	0	0	1		
H040444	Gatton	QLD	2022-Mar	0	0	0	1		
H040455	Dunollie	QLD	2022-Mar	L 00	0	0	0		
H040716	Laidley	QLD	2022-Mar 2022-Mar	7/00	0	0	1		
H040761	Wolffdene	QLD	2022-Mar	1	0	0	0		
H040812	Moggill	QLD	2(22)-Mar	0	0	1	0		
H040826	Miva	QLD (2022-Mar	1	0	0	0		
H040837	Stonelands	00///	2022-Mar	0	1	0	0		
H040846	Clearview C	(ALD	2022-Mar	0	0	0	0		
H040878	Waterford	QLD	2022-Mar	1	0	0	0		
H040903	Pacific Haven	QLD	2022-Mar	0	0	0	0		
H040907	Howard	QLD	2022-Mar	0	0	0	0	I	

Visualisation and filters from Forecast Tree

View Performance KPIs at the State/Territory, Basin and Location Scale

Back to the future: Performance Analysis Tool

Monthly performance statistics from start of QAQC to final export of results is now taking one person between 2-4 days.

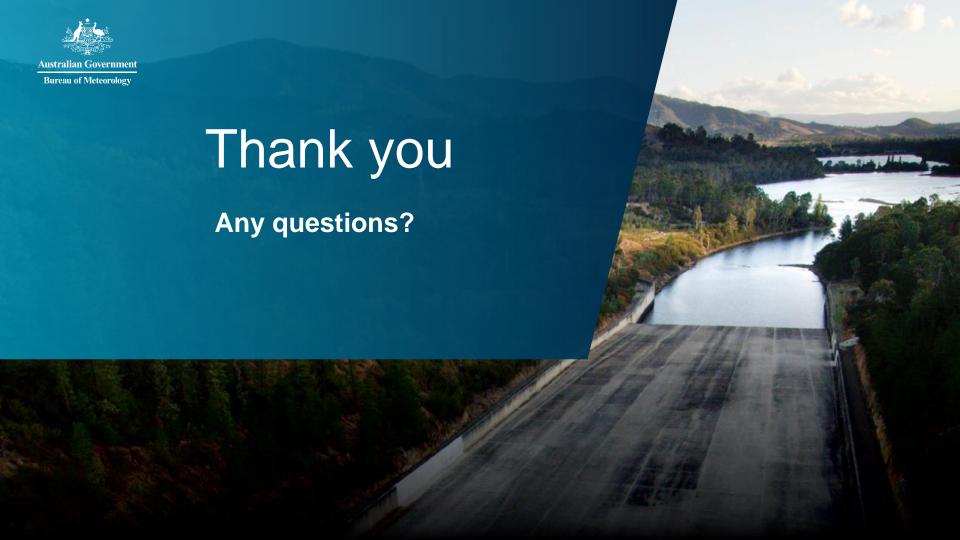
More time to:

- Focus on analysis for improving the service
- Identifying issues around process in the flood warning centres
- Determining priority locations / catchments for improvements
- Running internal performance results workshops and training (NEW!)

Flood Performance Results & Training 16th June — 15th July 2022 Claire McClusky & Aynul Kabir Community Services Group | Environmental Prediction Services - Water Australian Bureau of Meteorology

Close to near time analysis:

- Ability to meet internal and external reporting requirements DURING or shortly after major events.
- Performance analysis available for input into post event debriefs (PERM) and internal performance results workshops and training


Next steps for Performance Analysis Tool

- Minimise the QAQC requirements
- Further improvements to visualisation to the performance analysis data
- Progress using the peak selection and export to automate development of peak height correlations
- Investigate the use of the tool and algorithms for analysis of model performance
- Investigate metrics for flood watch products

